Reed-Solomon group codes. In general, a group code over \(p \), denoted by \(C_\text{TM} \). This paper deals with MDS codes over \(C_\text{TM} \) of length \(p^m - 1 \) which is cyclic and MDS is called a Reed-Solomon group code. In general, a group code over \(C_\text{TM} \) need not be a linear code over \(GF(p^m) \) as shown in the following example.

Example 1: Consider length 4, code over \(C = \{1,x,y,xy\} \) consisting of the following 16 codewords:

\[
\begin{align*}
(1,1,1,1) & \quad (l,x,xy,y) \\
& \quad (l,y,y,x) \\
(x,l,xy,x) & \quad (x,x,l,x) \\
& \quad (x,y,y,y) \\
(y,x,x,l) & \quad (y,xy,x,l) \\
& \quad (y,y,xy,y) \\
(xy,l,1,x) & \quad (xy,y,xy,x) \\
& \quad (xy,xy,l,1) \\
& \quad (1,1,1,1)
\end{align*}
\]

The Hamming distance of this code is 3 and hence this is a MDS group code.

In [1], it is shown that if \(C \) is an \((n,k,n-k+1)\) group code over an abelian group \(G \) that is not elementary abelian, then there exists an \((n,k,n-k+1)\) group code over a smaller elementary abelian group \(G' \). In view of these results a natural question that arises is "Are all MDS group codes over \(C_\text{TM} \) linear over \(GF(p^m) \)?" Example 1 shows that this is not true, in general. But, if one considers only cyclic and length \(p^m - 1 \) group codes then it is true. In other words, all Reed-Solomon group codes over \(C_\text{TM} \) are conventional linear codes over \(GF(p^m) \). This can be shown by extending the well known transform approach for cyclic codes over finite fields [2] to group codes over elementary abelian groups.

II. Transform approach to cyclic codes over elementary abelian groups: Let \(C_\text{TM} \) denote the elementary abelian group isomorphic to direct sum of \(m \) cyclic groups of order \(p \) each. The ring of endomorphisms of \(C_\text{TM} \) is denoted by \(\text{End}(C_\text{TM}) \). The set of automorphisms of \(C_\text{TM} \), denoted by \(\text{Aut}(C_\text{TM}) \), form a group whose order is \(p^{m^2-m}n^\ell \), where \(n \) is the order of \(C_\text{TM} \). Among the cyclic subgroups of \(\text{Aut}(C_\text{TM}) \), there are maximal order subgroups have order \((p^m-1) \). The ring \(\text{End}(C_\text{TM}) \) is isomorphic to \(\text{M}_n(p) \), ring of \(m \times m \) matrices over \(GF(p) \) [3]. This isomorphism gives matrix representation for elements of \(\text{End}(C_\text{TM}) \). It can be easily seen that, when this matrix representation is used, the groups of nonzero elements of \(GF(p^m) \) when represented by their companion matrices [4] corresponding to each irreducible polynomial of degree \(m \) coincides with a maximal order cyclic subgroup of \(\text{Aut}(C_\text{TM}) \).

Definition 1: For any \(C_\text{TM} \), let \(S \) denote a maximal order cyclic subgroup of \(\text{Aut}(C_\text{TM}) \). \(S \) with all zero matrix constitute an elementary abelian group isomorphic to \(C_\text{TM} \), considered along with matrix multiplication, form a ring called a canonical ring of \(C_\text{TM} \).

For example, the representation of a finite field with a canonical matrix and its powers along with all zero matrix, clearly gives a canonical ring of \(C_\text{TM} \).

Definition 2: Generalized Discrete Fourier Transform (GDFT): Let \(a^j = (a_0,a_1,...,a_{n-1}) \), where \(a \in C_\text{TM} \), \(i = 0,1,2,...,n-1 \). The transform vector of \(a \) denoted by \(\Delta_a \) is defined by

\[
\Delta_a = \sum_{i=0}^{n-1} a^j \phi^i, j = 0,1,...,n-1,
\]

where \(a \) is a generator of a cyclic subgroups of \(\text{Aut}(C_\text{TM}) \) of order \(n \) and \(\phi \) denotes group operation in \(C_\text{TM} \).

When \(C_\text{TM} \) is made \(GF(p^m) \) by imposing a multiplication structure with an irreducible polynomial \(g(x) \) then all non zero elements of \(GF(p^m) \) can be represented by the companion matrix of \(g(x) \) and its powers and \(a \) in Definition 2 can be replaced by the companion matrix of \(g(x) \). Then, Definition 2 coincides on the conventional DFT over \(GF(p^m) \), of length \(p^m - 1 \).

Using the GDFT given in Definition 2 and the properties of \(\text{Aut}(C_\text{TM}) \) and its matrix representation the following can be proved.

Theorem 1: Every cyclic and length \(p^m - 1 \) MDS group code is a conventional linear code over \(GF(p^m) \). In other words, all Reed-Solomon group codes over \(C_\text{TM} \) are conventional linear codes over \(GF(p^m) \).

REFERENCES