Abstract — We analyze the error performance of a wireless communication system employing transmit-receive diversity in Rayleigh fading. By focussing on the complex Gaussian statistics of the independent and identically distributed entries of the channel matrix, we derive a formula for the characteristic function (c.f.) of the maximum output signal-to-noise ratio (SNR). We use this c.f. to obtain a closed-form expression of the symbol error probability (SEP) for coherent binary keying. An approximate expression for the SEP when the average SNR per branch is large is also obtained. The method can be easily extended to obtain the SEP of M-ary modulation schemes.

I. INTRODUCTION

With the rapid increase in the number of wireless services, more and more wireless communication systems may require diversity at the transmitter in addition to diversity at the receiver to combat the severe effects of fading. This has motivated the study of transmit diversity along with receive diversity. Different transmit diversity techniques, like delay transmit diversity [1, 2] and space transmit diversity [3, 4, 5], have been proposed, but these are based on objectives other than maximizing the signal-to-noise ratio (SNR).

In [6], maximum ratio transmission, which is based on transmit-receive space diversity, has been studied under the assumption that the optimum complex weight vector at the receiver maximizes the output SNR, has all entries with the same modulus since the entries of the complex channel matrix are statistically identical. An approximate expression for the symbol error probability (SEP) for binary phase-shift keying (BPSK) when the average SNR per branch is large and the channel matrix has independent complex Gaussian entries, which corresponds to Rayleigh fading, has also been obtained.

In this paper, we analyze transmit-receive diversity in Rayleigh fading by focussing on the complex Gaussian statistics of the independent and identically distributed (i.i.d.) entries of the channel matrix. Without making any assumption on the structure of the optimum complex weight vector at the receiver, we derive a formula for the characteristic function (c.f.) of the maximum output SNR as a finite linear combination of elementary gamma c.f.s. We use this c.f. to obtain a closed-form expression of the SEP for coherent binary keying. An approximate expression for the SEP when the average SNR per branch is large is also obtained. The method can be easily extended to obtain the SEP of M-ary modulation schemes. We present plots of the SEP versus the average SNR per diversity branch to see the effect of different transmit and receive diversity orders on the error performance.

II. THE CHANNEL MODEL

Consider a transmit-receive diversity system employing N antennas for transmission and L antennas for reception. Thus there are NL diversity branches. After sampling at the symbol interval the $L \times 1$ complex signal vector received at the L antennas is given by

$$r = cPHw + n,$$

where c is the transmitted symbol satisfying $|c| = 1$, w the $JVx1$ transmit weight vector, H the $L \times N$ channel matrix, P the signal power at each receiving antenna, and n the $Lx1$ additive noise vector. We assume the noise to be temporally and spatially white with mean zero and a multivariate complex circular Gaussian distribution. Owing to circularity of n, we have $E[nn^H] = 0$, where $E[\cdot]$ denotes the expectation operator and $(\cdot)^H$ denotes the transpose operator. Since the noise is uncorrelated between the diversity branches, we have

$$E[nn^H] = \sigma^2 I_L,$$

where $(-)^H$ denotes the Hermitian operator, and IL is the $L \times L$ identity matrix.

The channel matrix H can be written as

$$H = [H_{ij}, j, L, N, r],$$

where H_{ij} is the channel coefficient from the jth transmitting antenna to the ith receiving antenna. We consider Rayleigh fading, in which the channel coefficients H_{ij}, $i = 1, \ldots, L$, $j = 1, \ldots, N$ are i.i.d. complex circular Gaussian random variables, each with a $CN(0,1)$ distribution, implying

$$E[H_{ij}] = 0, \quad E[H_{ij}^2] = 0, \quad E[|H_{ij}|^2] = 1.$$
III. THE MAXIMUM EIGENVALUE PROBLEM

The transmit weight vector w, which we choose to be a unit vector, can be expressed as

$$w = \frac{y}{\|H^Hy\|},$$

(4)

where y is the weight vector at the receiver, and $\|\cdot\|$ is the Euclidean norm. Substituting (4) in (1), we get

$$r = c\sqrt{P_s}H^Hy + n.$$

(5)

The decision variable for detecting the symbol c is obtained by taking the dot product of y and r, resulting in

$$y^Hr = c\sqrt{P_s}\|H^Hy\| + y^Hn.$$

(6)

The output SNR, conditioned on the channel matrix H, is given by

$$\gamma = \frac{P_s\|H^Hy\|^2}{\sigma^2\|y\|^2} = \frac{P_s}{\sigma^2} (HH^H)^{-1}$$

(7)

where σ^2 denotes the average SNR per branch. In order to minimize the symbol error rate, we have to maximize γ with respect to y. It is clear from (7) that this maximization problem is the same as finding the squared-L2 norm of the matrix H^H, or alternatively, that of the matrix H. This squared-L2 norm is the maximum eigenvalue of the Hermitian matrix HH^H, which we denote as Λ_{max}, and the eigenvector of HH^H corresponding to Λ_{max} is the optimum weight vector y_{max} which maximizes γ to yield γ_{max}. Thus

$$\gamma_{\text{max}} = \max_y \frac{P_s}{\sigma^2} \|H^Hy\|^2 = \frac{P_s}{\sigma^2} \Lambda_{\text{max}}.$$

(8)

For coherent reception of binary signals, the symbol error probability, conditioned on γ_{max}, is given by

$$P_{e|\gamma_{\text{max}}} = Q\left(\sqrt{2\gamma_{\text{max}}^*}\right),$$

(9a)

where

$$\gamma = \frac{1 - \rho}{2},$$

(9b)

and ρ is the correlation coefficient between the two signaling waveforms. If $c0$ and $c1$ are the two values of the symbol c, then

$$e = 3?\{c0c\},$$

(9c)

where $\Re\{\cdot\}$ denotes the real-part operator, and $(\cdot)^*$ denotes the complex conjugate. Using Craig’s formula of the Q-function [7], (9a) can be rewritten as

$$P_{e|\gamma_{\text{max}}} = \frac{1}{\pi} \int_0^{\pi/2} \exp \left\{-\frac{\gamma_{\text{max}}^*}{\sin^2 \theta} \right\} \, d\theta.$$

(10)

The average SEP is then given by [8]

$$P_e = \frac{1}{\pi} \int_0^{\pi/2} \psi_{\gamma_{\text{max}}} \left(\frac{1}{\sin^2 \theta} \right) \, d\theta,$$

(11)

where $\psi_{\gamma_{\text{max}}}$ denotes the c.f. of γ_{max}. We focus on finding the c.f. of γ_{max}, which will result in a closed-form expression for the SEP.

IV. SEP FOR COHERENT BINARY KEYING

Let h_i denote the ith column vector of the channel matrix H, which implies

$$H = \{h_1, h_2, \ldots, h_N\}.$$

(12)

The Hermitian matrix V is defined as

$$V = HH^H = \sum_{i=1}^{N} h_i h_i^H.$$

(13)

The $L \times 1$ vectors h_1, \ldots, h_N are i.i.d. complex Gaussian random vectors each distributed as $CN(0, I_L)$. When the transmit diversity order is no less than the receive diversity order, that is, $N \geq L$, V has a Wishart distribution, and its L eigenvalues $\Lambda_1, \ldots, \Lambda_L$, which are real and positive with probability one, have the joint probability density function (p.d.f.) [9]

$$f_{\Lambda_1, \ldots, \Lambda_L}(\lambda_1, \ldots, \lambda_L) = \frac{1}{\prod_{i=1}^{L} \lambda_i^{(N-L)}} \exp \left(\sum_{i=1}^{L} \lambda_i \right)$$

$$\times \prod_{1 \leq i < j \leq L} \left(\lambda_i - \lambda_j\right)^2,$$

(14)

$$\lambda_1, \ldots, \lambda_L > 0.$$

On the other hand, when the transmit diversity order is less than the receive diversity order, that is, $N < L$, V has a pseudo-Wishart distribution; N of its eigenvalues, denoted as $\Lambda_1, \ldots, \Lambda_N$, are real and positive with probability one, and the remaining $L - N$ of the eigenvalues, denoted as $\Lambda_{N+1}, \ldots, \Lambda_L$, are zero, that is

$$\lambda_{N+1} = \ldots = \lambda_{L} = 0.$$

(15)

The joint p.d.f. of $\Lambda_1, \ldots, \Lambda_N$ is given by

$$f_{\Lambda_1, \ldots, \Lambda_N}(\lambda_1, \ldots, \Lambda_N) = \frac{N!}{\prod_{i=1}^{N} (N-i)!} \prod_{i=1}^{N} \lambda_i^{(N-i)}$$

$$\times \prod_{1 \leq i < j \leq N} \left(\lambda_i - \lambda_j\right)^2,$$

(16)

$$\lambda_1, \ldots, \lambda_N > 0.$$

1133
which has the same form as the p.d.f. (14) for \(N > L \) with \(L \) and \(N \) exchanged.

Without loss of generality, we consider the case when \(N > L \).

The cumulative distribution function of \(\Lambda_{\text{max}} = \max(\Lambda_1, \ldots, \Lambda_L) \) is obtained from (14) as

\[
F_{\Lambda_{\text{max}}} (u) = \int_{0}^{\infty} \cdots \int_{0}^{\infty} \left(\prod_{i=1}^{L} \lambda_i \right)^{N-L} \exp \left(-\sum_{i=1}^{L} \lambda_i \right) \prod_{i=1}^{L} \lambda_i^{-(N-i)!} \{ \Lambda(A_1, \ldots, A_L) \}^\prime dA_1 \cdots dA_L. \tag{17}
\]

where \(\Lambda(A_1, \ldots, A_L) \) denotes the Vandermonde determinant of \(\lambda_1, \ldots, \lambda_L \).

We consider the evaluation of the integral \(I(u) \) given by

\[
I(u) = L! \left[\prod_{i=1}^{L} (L-i)! \{N-i\}! \right] F_{\Lambda_{\text{max}}}(u)
\]

\[
= \int_{0}^{\infty} \cdots \int_{0}^{\infty} \lambda_1^{N-L} \exp(-\lambda_1) \prod_{i=1}^{L} \lambda_i^{-(N-i)!} \{ \Lambda(A_1, \ldots, A_L) \}^\prime dA_1 \cdots dA_L. \tag{18}
\]

By making use of the fact that the integrand of \(I(u) \) is symmetric in \(\lambda_1, \ldots, \lambda_L \), it can be shown after some algebra that we can express \(I(u) \) in terms of the determinant of a matrix function whose elements are integrals. Thus

\[
I(u) = L! \det (S(u)) \tag{19a}
\]

where the element in the \(k \)th row and \(l \)th column of \(S(U) \) is given by

\[
(S(u))_{k,l} = S_{k,l}(u) = \int_{0}^{\infty} \lambda_1^{N-L} \exp(-\lambda_1) \lambda_k^{k+l-2} d\lambda_k
\]

\[
= \int_{0}^{\infty} \lambda_1^{N-L+k+l-2} \exp(-\lambda_1) dx = \Gamma(N-L+k+l-1, u), \tag{19b}
\]

the incomplete gamma function \(I(k+1, u) \) for \(k = 0, 1, 2, \ldots \) and \(u > 0 \) having the representation

\[
\Gamma(k+1, u) = \int_{0}^{\infty} x^k \exp(-x) dx = k! \left[1 - e^{-u} \sum_{m=0}^{k} \frac{u^m}{m!} \right]. \tag{20}
\]

Note that \(S(u) \) is an \(L \times L \) Hankel matrix.

By careful examination of the entries of matrix \(S(u) \), it can be shown from (17), (18), and (19) that

\[
f_{\Lambda_{\text{max}}}(u) = \frac{1}{L! \prod_{i=1}^{L} (L-i)! \{N-i\}!} \frac{d}{du} \det (S(u))
\]

\[
= \frac{1}{L! \prod_{i=1}^{L} (L-i)! \{N-i\}!} \prod_{m=N-L}^{L} \begin{bmatrix} n \\ m \end{bmatrix} c_{i,m} u^m, \tag{21}
\]

where \(c_{i,m} \) is the coefficient of \(e^{-u} u^m \). This can be written as a finite linear combination of elementary gamma p.d.f.s, each with parameter \(m+1 \) and mean \(\frac{m+1}{u} \) as

\[
f_{\Lambda_{\text{max}}}(u) = \prod_{i=1}^{L} \begin{bmatrix} n \\ m \end{bmatrix} d_{i,m} \frac{m+1}{m!}, \tag{22}
\]

where

\[
d_{i,m} = \frac{m! v_{i,m}}{\prod_{j=1}^{m} \begin{bmatrix} n \\ j \end{bmatrix}}. \tag{23}
\]

By applying in (22) the result

\[
\int_{0}^{\infty} e^{ax} e^{-x} dx = a^{-1} \Gamma(a^{-1}), \quad a > 0, \quad k = 0, 1, 2, \ldots, \quad J = A/\sqrt{-T}, \tag{24}
\]

and noting from (8) that \(*_{\gamma_{\text{max}}}(jw) = \Psi_{\gamma_{\text{max}}}(jw)^{\frac{1}{2}} \), the c.f. of \(\gamma_{\text{max}} \) is given by

\[
\Psi_{\gamma_{\text{max}}}(jw) = \prod_{i=1}^{L} \begin{bmatrix} n \\ m \end{bmatrix} d_{i,m} \frac{m+1}{m!} \frac{1}{(1 - 2\pi u_0)^{1/2}} \tag{25}
\]

Thus (25) is a formula for the c.f. of \(\gamma_{\text{max}} \) as a finite linear combination of elementary gamma c.f.s.

By combining (11) and (25), the SEP for coherent reception of binary signals is expressed as

\[
\text{Pe} = \prod_{i=1}^{L} \begin{bmatrix} n \\ m \end{bmatrix} d_{i,m} \frac{m+1}{m!} \int_{0}^{\pi} \frac{1}{(1 - 2\pi u_0)^{1/2}} d\theta. \tag{26}
\]

It is known from [10] (equation (77)) that

\[
\frac{1}{\pi} \int_{0}^{\pi} \left(\frac{\sin^2 \theta}{\cos^2 \theta + 2\sin^2 \theta} \right)^{m+1} d\theta = \frac{1}{2} \left[2I\left(1 + a^2\right) \right]^{-1} \sum_{m=0}^{m} \left(2I
ight) \left((1 + a)^{m} \right). \tag{27}
\]
for both $N > L$ and $N < L$, replace $N - L$ by $\lvert N - L \rvert$ in the
is as follows. In [6], it has been assumed that each complex
power of the average SNR per branch.

As a result, the SEP has the same expression as (28) with
L and N exchanged.

To obtain a closed-form expression for P_e which is valid
for both $N \geq L$ and $N < L$, replace $N - L$ by $\lvert N - L \rvert$ in the
summation over m and L by $\min(N, L)$ in the summation
over i in (28).

We observe from (19b) and (26) that for any pair
(N, L), the SEP depends on $\sum_{m = 1}^{N - L}$, $\min(N, L)$, and
$\min(N, L)$ and m is unity, as expected. When $N < L$, the p.d.f. $f_{A_{m}}(u)$ is given by (21) with
L and N exchanged, such that the element in the kth row
and the lth column of the $N \times N$ Hankel matrix $S(u)$ is expressed as

$$
(S(u))_{k,l} = S_{\gamma, \Lambda}(u) = \Gamma[L - N + k + l - 1, u].
$$

As a result, the SEP for $(N, L) = (3, 5)$
will be different from that for $(N, L) = (6, 2)$.

When the average SNR per branch is large, that is,
\(\sigma_s^2 \gg 1\), we can consider, in the SEP expression, only
the ith term in the summation over i in (28). This gives rise to the approximate SEP expression (25) in [6], which can be written using our
notations as

$$
P_e \approx \left(\frac{2NL - 1}{NL} \right) \left(\frac{4g}{\sigma_s^2} \right)^{-NL}.
$$

On the other hand, we consider here the p.d.f. of A_{max}, which, for Rayleigh fading with i.i.d. complex Gaussian entries of H, the lower bound on y_{max} approximates to a gamma p.d.f.
with parameter NL and mean $N\sigma_P^2s$, and when the average
SNR per branch is large, this gives rise to the approximate SEP expression (25) in [6], which can be written using our
notations as

$$
P_e \approx \left(\frac{2NL - 1}{NL} \right) \left(\frac{4g}{\sigma_s^2} \right)^{-NL}.
$$

Thus the SEP decreases inversely with the $(JY - L + 1)$th
power of the average SNR per branch.

The result (30) is different from that given by equation
(25) of [6] where the SEP decreases inversely with the
(NL)th power of the average SNR per branch. The reason
is as follows. In [6], it has been assumed that each complex
entry of the $Lx 1$ optimum weight vector y_{max} at the
receiver has the same modulus since the entries of the channel matrix H are statistically identical. In the case of Rayleigh fading with i.i.d. complex Gaussian entries of H, the lower bound on y_{max} approximates to a gamma p.d.f. with parameter NL and mean $N\sigma_P^2s$, and when the average
SNR per branch is large, this gives rise to the approximate SEP expression (25) in [6], which can be written using our
notations as
modulation scheme, and γ_{max} and A_{max} are governed by

$$
\gamma_{\text{max}} = \frac{PS_{av} A}{a},
$$

PS_{av} being the signal power averaged over all M signaling waveforms. Substituting (25) in (32), and replacing P_s by PS_{av} in the resulting expression, we get, for $N > L$,

$$
P(\Theta, s) = \sum_{m=N-L}^{L} d_i \nu J_i, m(\Theta, s),
$$

where the integral $J_i, m(\Theta, s)$ given by

$$
J_i, m(\Theta, s) = \int_{0}^{\pi} \left(\frac{\sin^2 \theta}{\frac{2M}{2M_{\text{avg}}} + \sin^2 \theta} \right)^{m+1} d\theta
$$

can be expressed in closed-form by equation (77) of [10].

VI. NUMERICAL RESULTS

Plots of the SEP P_s versus the average SNR per branch s for BPSK with different values of (N, L) are shown in Fig. 1. The coefficients d_i, for each (N, L) have been calculated by curve-fitting, and these have been used to compute the SEP using (28). We see from the plots that increase in N for a given L or increase in L for a given N improves the performance. The plots also show clearly that the SEP does not depend on NL alone. The performance with $(N, L) = (6, 2)$ in Fig. 1(a) is better than that with $(N, L) = (4, 3)$ in Fig. 1(b), although $NL = 12$ in both cases. Similarly $(N, L) = (8, 2)$ in Fig. 1(a) performs better than $(N, L) = (6, 4)$ in Fig. 1(b). On the other hand, the performance with $(N, L) = (2, 2)$ in Fig. 1(a) is inferior to that with $(N, L) = (4, 1)$ in Fig. 1(b). Therefore, if we have to keep NL fixed, then it is desirable to have $|N - L|$ as large as possible. This is consistent with the analytical result (30) for high average SNR per branch which indicates that the SEP decreases exponentially with increase of $|N - L|$.

VII. CONCLUSION

We have analyzed the error performance of a transmit-receive space diversity system in Rayleigh fading. The channel matrix H of such a system has i.i.d. complex Gaussian entries. The weight vector at the receiver must be chosen to maximize the output SNR, and this results in finding the maximum eigenvalue of HH^H, which is proportional to the maximum output SNR. From the joint p.d.f. of the eigenvalues of HHH^H, we derive a formula for the c.f. of the maximum output SNR as a linear combination of a finite number of elementary gamma c.f.s. We use this c.f. to obtain a closed-form expression of the SEP.

REFERENCES

