Two-dimensional analytical model for estimating crosswind integrated concentration in a capping inversion: eddy diffusivity as a function of downwind distance from the source

Maithili Sharana,\dagger, Suman Guptab

aCentre for Atmospheric Sciences, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
bGovernment Girls Senior Secondary School \#1, Madangir, New Delhi, India

Received 29 April 2001; accepted 26 August 2001

Abstract

A mathematical model has been proposed for computing crosswind-integrated concentration in a capping inversion layer by considering the eddy diffusivity as a function of down wind distance from the source. An analytical solution of the resulting partial differential equation with the physically relevant boundary conditions has been obtained for the general functional form of eddy diffusivity using the method of eigen-function expansion.

The model with eddy diffusivity as a linear function of downwind distance is validated with the available data in the literature from Copenhagen in Denmark and plume validation experiment conducted by Electric Power Research Institute at Kingsan in USA. The agreement is found to be good between the computed and the observed concentrations in both the experiments. In fact, majority of the concentrations predicted from the model are with in a factor of two to observations.

Keywords: Mathematical model; Dispersion; Crosswind-integrated concentration; Eddy diffusivity; Eigen-function expansion

1. Introduction

Atmospheric dispersion models are needed for impact assessment, siting of industrial and residential complexes, emergency preparedness, planning and management, and related matters. A dispersion model plays a crucial role as a part of methodology to develop air quality criteria. The factors largely responsible for the dispersion include the physical and chemical nature of emissions, prevailing meteorological conditions, location of the source and terrain characteristics. Dispersion of pollutants in the atmosphere is governed by the following dominant mechanisms (Wark and Warner, 1981): (i) mean air-flow that transports the pollutants down wind and (ii) turbulent velocity fluctuations that disperse the pollutants in all directions. It is required to parameterize turbulence and the wind velocity in the formulation of atmospheric dispersion models.

Analytical models are extensively used for the air quality analysis by the enforcement agencies. Gaussian models are widely used (Seinfeld, 1986; Zannetti, 1990) for this purpose and they have their own limitations. Assuming eddy diffusivities and the wind velocity to be constant, the governing equations in the Gaussian models are solved analytically (Hanna et al., 1982). For the practical applications of the solution obtained, eddy diffusivities are expressed as functions of down wind distance through dispersion parameters and the wind speed is parameterized as the power law function of height above the ground (Irwin, 1979). This approach is widely accepted from application point of view, however, mathematically it is inconsistent (Llewelyn,
The crosswind average concentration is obtained by integrating Eq. (1) with respect to y from $-\infty$ to ∞.

$$U \frac{\partial C}{\partial x} = \frac{\partial}{\partial x} \left(K_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial C}{\partial z} \right).$$

(2)

Under moderate to strong winds, the transport due to advection dominates over that due to longitudinal diffusion:

$$U \frac{\partial C}{\partial x} \gg \frac{\partial}{\partial x} \left(K_x \frac{\partial C}{\partial x} \right)$$

and thus, we neglect the longitudinal diffusion term. Eq. (2) becomes

$$U \frac{\partial C}{\partial x} = \frac{\partial}{\partial z} \left(K_z \frac{\partial C}{\partial z} \right).$$

(4)

This is subject to the following boundary conditions:

(i) The no-flux condition at the ground:

$$z = 0, \quad \frac{\partial C}{\partial z} = 0.$$

(5a)

(ii) The pollutant can not penetrate through the layer located at a height H and accordingly,

$$z = H, \quad \frac{\partial C}{\partial z} = 0.$$

(5b)

where H is the height of the inversion layer above the ground.

(iii) The pollutant is released from an elevated source of strength Q located at $(0, h_0)$ and we have

$$z = 0, \quad U \tau(0, z) = Q \delta(z - h_0); \quad 0 \leq h_0 < H.$$

(5c)

where h_0 is the stack height and δ is the Dirac delta function. The Dirac delta function $\delta(z - h_0)$ vanishes everywhere except at the point $z = h_0$ and it has unit area under the curve in the interval containing $z = h_0$, i.e.,

$$\int_{-\infty}^{\infty} \delta(z - h_0) \, dz = 1.$$

The Gaussian model is essentially based on Fickian diffusion theory and the solution is obtained by assuming constant apparent eddy diffusivity K_z, which is parameterized in the solution in terms of dispersion parameter σ representing the growth of the plume as a function of downwind distance. For the case of onshore flow over a coastline, where inland areas are progressively unstable, one can expect the eddy diffusivity as a function of downwind distance. Here we take the eddy diffusivity K_z as a function of distance downwind from the source (Arya, 1995), i.e.,

$$K_z = K(x).$$

(6)

Since the pollutant particles travel downwind at a constant speed, this is equivalent to assuming that the diffusion coefficient in the vertical direction is a function of the downwind flight time (Ernau, 1977). An analogous situation occurs in the theory of Brownian
motion where the diffusion coefficient of the Brownian particles is a function of time (Chandrasekhar, 1943).

Using (6), Eq. (4) reduces to:

\[\frac{\partial \xi}{\partial x} = K(\tau) \frac{\partial^2 \xi}{\partial \tau^2} \] \hspace{1cm} (7)

The resulting parabolic partial differential Eq. (7) (describing cross-wind integrated concentration) with eddy diffusivity as a function of downwind distance can be solved, in principle, numerically. One of the boundary conditions is prescribed in terms of Dirac delta function representing a point source. The various approaches are used to approximate Dirac delta function for describing a point source in the numerical models. Some of them used the Gaussian distribution function. Kansa and Carlson (1992) have used a function of the form

\[\delta(x - 1/2) = 120/(1 + v^2) \] in which \(v = 120(x - 1/2) \),

to represent the Dirac delta function around the point \(x = 1/2 \). Third approach has been to distribute the mass uniformly at a number of grid points located in the neighborhood of a point source. Recently, Kansa (personal communication) has pointed out to approximate the Dirac delta function in terms of a triangular function. However, the representation/resolution of a point source in the numerical dispersion models is an open problem in the literature. An alternative approach avoiding this problem is based on the Lagrangian Particle dispersion modeling (Sharan and Gopalakrishnan, 2002).

In the present study, we solve Eq. (7) for arbitrary functional form of \(K \) with \(x \) analytically to obtain a closed form solution.

2.1. Solution

Eq. (7) represents a parabolic partial differential equation with variable coefficients. Both the boundary conditions (5a and 5b) with respect to \(z \) are homogeneous. Eq. (7) with the boundary conditions 5a–c) can be treated as an eigenvalue problem (Zanderer, 1983). The problem of determining a nonzero solution of a homogeneous differential equation with homogeneous boundary conditions is known as an eigenvalue problem.

A solution to Eq. (7) satisfying the boundary conditions (5a and 5b) is given by (Appendix A):

\[\xi(x, z) = A_0 + \sum_{n=1}^{\infty} A_n \cos(\beta_n z) \times \exp \left\{ -\frac{\beta_n^2}{U} \int_0^K (K(x')) \, dx' \right\}, \] \hspace{1cm} (8)

where \(\beta_n = n \pi / H \) and \(A_n, \ i = 0, 1, 2, ... \) is the set of infinite coefficients which need to be determined using condition (5c).

2.2. Estimation of coefficients

Condition (5c) using (8) can be written as

\[A_0 + \sum_{n=1}^{\infty} A_n \cos(\beta_n z) = \frac{Q}{U} \delta(z - h_0). \] \hspace{1cm} (9)

Notice that 0 and \(\beta_n (n \geq 1) \) are the eigenvalues of the operator \(-d^2/dz^2\). The corresponding eigenvectors are:

\[1, \cos(\beta_n z), n \geq 1. \] \hspace{1cm} (10)

We will use the orthogonal property of the eigenvectors. Multiplying Eq. (9) by the eigenvectors \(1, \cos(\beta_n z); \ n \geq 1 \) and integrating with respect to \(z \) from 0 to \(H \), we find

\[A_0 = \frac{Q}{HU}, \]

\[A_n = \frac{2Q}{HU} \cos(\beta_n h_0), \quad n \geq 1. \] \hspace{1cm} (11)

Finally, the solution of (7) is given by

\[\xi(x, z) = \frac{Q}{HU} \left[1 + 2 \sum_{n=1}^{\infty} \cos(\beta_n h_0) \cos(\beta_n z) \times \exp \left\{ -\frac{\beta_n^2}{U} \int_0^K (K(x')) \, dx' \right\} \right]. \] \hspace{1cm} (12)

Eq. (12) provides the crosswind average concentration of a pollutant, released from an elevated point source, in the atmosphere with eddy diffusivity depending on the downwind distance from the source. Eq. (12) can be expressed as (Whittaker and Watson, 1958)

\[\xi(x, z) = \frac{Q}{2\sqrt{\pi} U f(x)} \left\{ \left(\sum_{n=-\infty}^{\infty} \exp \left\{ -\frac{U}{4f(x)} \left(z + h_n - 2nH \right)^2 \right\} \right) \right. \]

\[+ \left. \exp \left\{ -\frac{U}{4f(x)} \left(z - h_n - 2nH \right)^2 \right\} \right\}, \] \hspace{1cm} (13)

where

\[f(x) = \int_0^K K(x') \, dx'. \] \hspace{1cm} (14)

Eq. (13) may be interpreted as the contribution from a source term located at \(z = h_n \) and its successive images by reflection from two parallel boundaries at \(z = 0 \) and \(z = H \), respectively (Hanna et al., 1982; Seinfeld, 1986). The exponential terms in the summation in (13) converge rapidly even close to the source.

Notice that in the limit \(H \to \infty \) only the term corresponding to \(n = 0 \) contributes to the summation in Eq. (13) and one obtains

\[\xi(x, z) = \frac{Q}{2\sqrt{\pi} U f(x)} \left\{ \exp \left\{ -\frac{U}{4f(x)} (z + h_0)^2 \right\} \right. \]

\[\left. + \exp \left\{ -\frac{U}{4f(x)} (z - h_0)^2 \right\} \right\}. \] \hspace{1cm} (15)
Physically, $H \to \infty$ indicates the absence of inversion lid (Hanna et al., 1982).

From the application point of view, one is interested in the pollutant concentration at the ground. The concentration at the ground is obtained by putting $z = 0$ in Eq. (12) and it is given by

$$\bar{c}(x, 0) = \frac{Q}{HU} \left[1 + 2 \sum_{n=1}^{\infty} \frac{\cos(\beta_n h)}{n} \right] \times \exp \left(-\frac{\beta_n^2}{U} \int_0^x K(x') dx' \right).$$

(16)

The ground level concentration is influenced with the functional form of the eddy diffusivity.

2.3. Ground level source

Putting $h_s = 0$ in Eq. (13) to obtain concentration distribution for a ground level source.

$$\bar{c}(x, z) = \frac{Q}{\sqrt{\pi U(x)}} \sum_{n=-\infty}^{\infty} \frac{1}{\sqrt{4n^2}} \exp \left(-\frac{U}{4n^2} (z - 2nH)^2 \right).$$

(17)

For practical applications, expression (17) can be used for computing the concentration distribution of the pollutants released from a line source.

Solution (13) gives the crosswind-integrated concentration from an elevated release in a finite layer when the eddy diffusivity is a function of down wind distance from the source. The corresponding relation for a ground level release is given by Eq. (17). In the absence of the inversion layer, the relation for the crosswind-integrated concentration is obtained by taking the limit as $H \to \infty$ in Eq. (13).

2.4. Particular cases

1. Eddy diffusivity is taken as a constant K_0, we get from (13):

$$\bar{c}(x, z) = \frac{Q}{2 \sqrt{\pi K_0 x}} \left\{ \sum_{n=-\infty}^{\infty} \exp \left(-\frac{U}{4K_0 x} (z + h_s - 2nH)^2 \right) \right\},$$

$$+ \exp \left(-\frac{U}{4K_0 x} (z - h_s - 2nH)^2 \right).$$

(18)

Expressing (18) in terms of dispersion parameters using the relation $\sigma_x^2 = 2K_0 x / U$, we get

$$\bar{c}(x, z) = \frac{Q}{\sqrt{2\pi U \sigma}} \sum_{n=-\infty}^{\infty} [\exp(-z + h_s - 2nH)^2 / 2\sigma^2]$$

$$+ \exp \left(-z (z - h_s - 2nH)^2 / 2\sigma^2 \right).$$

(19)

which is the well-known Gaussian model for an elevated source with multiple reflections from two parallel boundaries at $z = 0$ and H.

2. Eddy diffusivity as a linear function of down wind distance:

Eddy diffusivity $K(x)$ can be parameterized as a linear function of down wind distance (Arya, 1995; Sharan et al., 1996a; Sharan and Yadav, 1998):

$$K(x) = 2 \alpha \overline{u}_x,$$

(20)

where x is the distance along the mean wind from the source, \overline{u}_x is the average wind speed obtained by taking the average of the wind in the layer bounded by two parallel lines $z = 0$ and $z = H$. The parameter α is identified as the turbulence intensity (Arya, 1995).

Using (20), Eq. (12) becomes

$$\bar{c}(x, z) = \frac{Q}{HU} \left[1 + 2 \sum_{n=1}^{\infty} \cos(\beta_n h_s) \cos(\beta_n z) \right] \times \exp \left(-\frac{\beta_n^2 \overline{u}_x x^2}{2U} \right).$$

(21)

3. Results and discussion

The crosswind integrated concentrations are estimated from Eq. (21) at $z = 0$. The turbulence parameter α is parameterized as

$$\alpha = \left(\frac{\sigma_x}{U} \right)^2,$$

(22)

where σ_x is the standard deviation of the vertical component of the velocity. For computing the concentration using Eq. (21), we require the source strength Q, effective stack height h_s, inversion height H, the wind velocity in the layer and the σ_u from the turbulence measurements. In the absence of turbulence measurements, σ_u can be parameterized in terms of convective velocity scale W_c in unstable conditions and frictional velocity u_f in stable conditions (Sharan et al., 1996a and Sharan and Yadav, 1998). W_c and u_f can be estimated from the similarity theory using tower observations.

The corresponding concentration from the Gaussian model is obtained from Eq. (19). The dispersion parameter σ in (19) is taken from the Briggs’ formulations (Briggs, 1975). We propose to validate the model with the available data in the literature from Copenhagen in Denmark (Gryning et al., 1987) and EPRI experiment (Hanna and Payne, 1987).

Atmospheric dispersion experiments were carried out (Gryning and Lyck, 1984; Gryning et al., 1987) in the northern part of Copenhagen under neutral and unstable conditions. The tracer SF$_6$ was released from a tower at a height of 115m. The site was mainly residential with a roughness length of ~0.6m. The parameters such as inversion height (H), wind speed (U) and σ_x reported in Table 1 are taken from Gryning et al. (1987). The observed values for the crosswind-integrated
Table 1
Observed and computed crosswind-integrated concentrations \((C/Q) \) at ground in diffusion experiments in northern part of Copeulagen (Gryning et al., 1987) with \(h_s = 115 \text{ m} \)

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>PG stability</th>
<th>(H) (m)</th>
<th>(U) (m s(^{-1}))</th>
<th>(\sigma_u) (m s(^{-1}))</th>
<th>Distance from source (m)</th>
<th>(C/Q) (10(^{-4}) s m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20-09-78</td>
<td>A</td>
<td>1980</td>
<td>3.4</td>
<td>0.83</td>
<td>1900</td>
<td>6.48</td>
</tr>
<tr>
<td>1</td>
<td>20-09-78</td>
<td>A</td>
<td>1980</td>
<td>3.4</td>
<td>0.83</td>
<td>3700</td>
<td>2.31</td>
</tr>
<tr>
<td>2</td>
<td>26-09-78</td>
<td>C</td>
<td>1920</td>
<td>10.6</td>
<td>1.07</td>
<td>2100</td>
<td>5.38</td>
</tr>
<tr>
<td>2</td>
<td>26-09-78</td>
<td>C</td>
<td>1920</td>
<td>10.6</td>
<td>1.07</td>
<td>4200</td>
<td>2.95</td>
</tr>
<tr>
<td>3</td>
<td>19-10-78</td>
<td>B</td>
<td>1120</td>
<td>5.0</td>
<td>0.68</td>
<td>1900</td>
<td>8.20</td>
</tr>
<tr>
<td>3</td>
<td>19-10-78</td>
<td>B</td>
<td>1120</td>
<td>5.0</td>
<td>0.68</td>
<td>3700</td>
<td>6.22</td>
</tr>
<tr>
<td>3</td>
<td>19-10-78</td>
<td>B</td>
<td>1120</td>
<td>5.0</td>
<td>0.68</td>
<td>5400</td>
<td>4.30</td>
</tr>
<tr>
<td>4</td>
<td>3-11-78</td>
<td>C</td>
<td>390</td>
<td>4.6</td>
<td>0.47</td>
<td>4000</td>
<td>11.66</td>
</tr>
<tr>
<td>5</td>
<td>9-11-78</td>
<td>C</td>
<td>820</td>
<td>6.7</td>
<td>0.71</td>
<td>2100</td>
<td>6.72</td>
</tr>
<tr>
<td>5</td>
<td>9-11-78</td>
<td>C</td>
<td>820</td>
<td>6.7</td>
<td>0.71</td>
<td>4200</td>
<td>3.84</td>
</tr>
<tr>
<td>5</td>
<td>9-11-78</td>
<td>C</td>
<td>820</td>
<td>6.7</td>
<td>0.71</td>
<td>6100</td>
<td>4.97</td>
</tr>
<tr>
<td>6</td>
<td>30-04-78</td>
<td>C</td>
<td>1300</td>
<td>13.2</td>
<td>1.35</td>
<td>2000</td>
<td>3.96</td>
</tr>
<tr>
<td>6</td>
<td>30-04-78</td>
<td>C</td>
<td>1300</td>
<td>13.2</td>
<td>1.35</td>
<td>4200</td>
<td>2.22</td>
</tr>
<tr>
<td>6</td>
<td>30-04-78</td>
<td>C</td>
<td>1300</td>
<td>13.2</td>
<td>1.35</td>
<td>5900</td>
<td>1.83</td>
</tr>
<tr>
<td>7</td>
<td>27-06-78</td>
<td>B</td>
<td>1850</td>
<td>7.6</td>
<td>0.87</td>
<td>2000</td>
<td>6.70</td>
</tr>
<tr>
<td>7</td>
<td>27-06-78</td>
<td>B</td>
<td>1850</td>
<td>7.6</td>
<td>0.87</td>
<td>4100</td>
<td>3.25</td>
</tr>
<tr>
<td>7</td>
<td>27-06-78</td>
<td>B</td>
<td>1850</td>
<td>7.6</td>
<td>0.87</td>
<td>5300</td>
<td>2.23</td>
</tr>
<tr>
<td>8</td>
<td>06-07-78</td>
<td>D</td>
<td>810</td>
<td>9.4</td>
<td>0.72</td>
<td>1900</td>
<td>4.26</td>
</tr>
<tr>
<td>8</td>
<td>06-07-78</td>
<td>D</td>
<td>810</td>
<td>9.4</td>
<td>0.72</td>
<td>3600</td>
<td>2.02</td>
</tr>
<tr>
<td>8</td>
<td>06-07-78</td>
<td>D</td>
<td>810</td>
<td>9.4</td>
<td>0.72</td>
<td>5300</td>
<td>1.53</td>
</tr>
<tr>
<td>9</td>
<td>19-07-78</td>
<td>C</td>
<td>2090</td>
<td>10.5</td>
<td>0.98</td>
<td>2100</td>
<td>4.38</td>
</tr>
<tr>
<td>9</td>
<td>19-07-78</td>
<td>C</td>
<td>2090</td>
<td>10.5</td>
<td>0.98</td>
<td>4200</td>
<td>2.11</td>
</tr>
<tr>
<td>9</td>
<td>19-07-78</td>
<td>C</td>
<td>2090</td>
<td>10.5</td>
<td>0.98</td>
<td>6900</td>
<td>2.59</td>
</tr>
</tbody>
</table>

\(^a\)RMSE (with present model) = 2.38 \times 10^{-4} \text{ s m}^{-2}; \ RMSE (with Gaussian model) = 3.49 \times 10^{-4} \text{ s m}^{-2}.

Concentrations are also taken from Gryning et al. (1987). The stability classification is chosen on the basis of the values of Monin-Obukhov length \(L \). As the site was primarily residential, dispersion parameters for urban terrain are considered in the computation of concentration in the Gaussian model. The concentrations estimated from the present as well as the Gaussian models are also given in Table 1. This shows that the concentrations predicted from the model are in good agreement with those observed. Most of the concentrations are predicted with a factor of 2. The concentrations computed from the present model are closer to the observations than those obtained from Gaussian model. The root mean square error (RMSE) is calculated from the formula:

\[\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} (C_i^\text{cal} - C_i^\text{obs})^2}{N}}, \]

where \(C_i^\text{cal} \) and \(C_i^\text{obs} \) denote the calculated and observed concentrations and \(N \) is the number of measurements. The root mean square errors for the present model and the Gaussian model are \(2.38 \times 10^{-4} \) and \(3.49 \times 10^{-4} \text{ s m}^{-2} \), respectively. In the computation of RMSE, the concentration is referred to \(Q \). Since the measurement site was mainly residential with a roughness length of about 0.6 m, we have considered the terrain as urban to calculate the dispersion parameter in the Gaussian model. However, the root mean square error is found to reduce from 3.49 to 1.82 by considering the site as rural.

The Electric Power Research Institute (EPRI) conducted a plume validation field experiment (Hudischewsky and Reynolds, 1983) in 1980 and 81 at Kincaid (a flat site near Springfield, Illinois, USA). During the experiment, extensive meteorological observations were taken together with the stack characteristics and tracer data (Myers and Reynolds, 1984). Hourly ground level concentrations due to \(SF_6 \) from a 187 m stack were observed by a network of about 200 monitors, spread on arcs at downwind distances ranging from 0.5 to 50 km during convective conditions. For the model validation, we have chosen the same data as taken by Hanna and Paine (1987). The values of \(Q, U, H, W_s \) (convective velocity scale) given in Table 2 are...
<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>Hr</th>
<th>PG stability</th>
<th>Q (g s$^{-1}$)</th>
<th>H (m)</th>
<th>U (m s$^{-1}$)</th>
<th>W^* (m s$^{-1}$)</th>
<th>σ_w (m s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25-4-80</td>
<td>12</td>
<td>A</td>
<td>11.2</td>
<td>893</td>
<td>2.3</td>
<td>0.76</td>
<td>1.79</td>
</tr>
<tr>
<td>2</td>
<td>25-4-80</td>
<td>13</td>
<td>A</td>
<td>11.2</td>
<td>1032</td>
<td>2.3</td>
<td>0.75</td>
<td>1.79</td>
</tr>
<tr>
<td>3</td>
<td>25-4-80</td>
<td>14</td>
<td>A</td>
<td>11.3</td>
<td>1175</td>
<td>3.3</td>
<td>0.89</td>
<td>1.86</td>
</tr>
<tr>
<td>4</td>
<td>25-4-80</td>
<td>15</td>
<td>B</td>
<td>11.1</td>
<td>1355</td>
<td>2.4</td>
<td>0.74</td>
<td>1.01</td>
</tr>
<tr>
<td>5</td>
<td>25-4-80</td>
<td>16</td>
<td>C</td>
<td>11.3</td>
<td>1539</td>
<td>3.4</td>
<td>0.93</td>
<td>1.33</td>
</tr>
<tr>
<td>6</td>
<td>25-4-80</td>
<td>17</td>
<td>C</td>
<td>10.7</td>
<td>1545</td>
<td>2.8</td>
<td>0.73</td>
<td>1.33</td>
</tr>
<tr>
<td>7</td>
<td>4-5-80</td>
<td>10</td>
<td>B</td>
<td>11.2</td>
<td>850</td>
<td>2.8</td>
<td>0.58</td>
<td>1.56</td>
</tr>
<tr>
<td>8</td>
<td>4-5-80</td>
<td>11</td>
<td>A</td>
<td>11.2</td>
<td>1447</td>
<td>2.8</td>
<td>0.62</td>
<td>2.33</td>
</tr>
<tr>
<td>9</td>
<td>4-5-80</td>
<td>12</td>
<td>A</td>
<td>11.2</td>
<td>1911</td>
<td>2.5</td>
<td>0.69</td>
<td>2.60</td>
</tr>
<tr>
<td>9</td>
<td>4-5-80</td>
<td>12</td>
<td>A</td>
<td>11.2</td>
<td>1911</td>
<td>2.5</td>
<td>0.73</td>
<td>2.60</td>
</tr>
<tr>
<td>10</td>
<td>7-5-80</td>
<td>10</td>
<td>B</td>
<td>16.2</td>
<td>950</td>
<td>4.0</td>
<td>0.83</td>
<td>1.84</td>
</tr>
<tr>
<td>11</td>
<td>7-5-80</td>
<td>11</td>
<td>B</td>
<td>12.0</td>
<td>1253</td>
<td>4.5</td>
<td>0.57</td>
<td>2.09</td>
</tr>
<tr>
<td>12</td>
<td>7-5-80</td>
<td>12</td>
<td>B</td>
<td>11.1</td>
<td>1548</td>
<td>5.1</td>
<td>0.80</td>
<td>2.28</td>
</tr>
<tr>
<td>13</td>
<td>9-5-80</td>
<td>11</td>
<td>A</td>
<td>12.1</td>
<td>1700</td>
<td>3.1</td>
<td>0.80</td>
<td>2.48</td>
</tr>
<tr>
<td>14</td>
<td>9-5-80</td>
<td>12</td>
<td>A</td>
<td>12.0</td>
<td>1750</td>
<td>2.1</td>
<td>0.41</td>
<td>2.58</td>
</tr>
<tr>
<td>15</td>
<td>13-7-80</td>
<td>10</td>
<td>B</td>
<td>10.2</td>
<td>226</td>
<td>3.3</td>
<td>0.40</td>
<td>1.15</td>
</tr>
<tr>
<td>16</td>
<td>13-7-80</td>
<td>11</td>
<td>A</td>
<td>12.3</td>
<td>241</td>
<td>2.9</td>
<td>0.41</td>
<td>1.32</td>
</tr>
<tr>
<td>17</td>
<td>13-7-80</td>
<td>12</td>
<td>A</td>
<td>14.5</td>
<td>275</td>
<td>2.0</td>
<td>0.41</td>
<td>1.49</td>
</tr>
<tr>
<td>18</td>
<td>12-7-80</td>
<td>13</td>
<td>A</td>
<td>14.6</td>
<td>396</td>
<td>1.9</td>
<td>0.45</td>
<td>1.59</td>
</tr>
<tr>
<td>19</td>
<td>12-7-80</td>
<td>14</td>
<td>B</td>
<td>13.2</td>
<td>554</td>
<td>2.0</td>
<td>0.45</td>
<td>1.83</td>
</tr>
<tr>
<td>20</td>
<td>12-7-80</td>
<td>15</td>
<td>B</td>
<td>13.2</td>
<td>600</td>
<td>1.7</td>
<td>0.59</td>
<td>1.77</td>
</tr>
<tr>
<td>21</td>
<td>13-7-80</td>
<td>16</td>
<td>B</td>
<td>13.5</td>
<td>600</td>
<td>1.6</td>
<td>0.46</td>
<td>1.66</td>
</tr>
<tr>
<td>22</td>
<td>13-7-80</td>
<td>17</td>
<td>B</td>
<td>14.3</td>
<td>600</td>
<td>1.9</td>
<td>0.39</td>
<td>1.34</td>
</tr>
<tr>
<td>23</td>
<td>12-7-80</td>
<td>18</td>
<td>C</td>
<td>14.9</td>
<td>619</td>
<td>2.7</td>
<td>0.33</td>
<td>1.12</td>
</tr>
<tr>
<td>24</td>
<td>20-7-80</td>
<td>9</td>
<td>C</td>
<td>18.3</td>
<td>121</td>
<td>7.7</td>
<td>0.46</td>
<td>0.98</td>
</tr>
<tr>
<td>26</td>
<td>24-7-80</td>
<td>15</td>
<td>B</td>
<td>13.7</td>
<td>1750</td>
<td>1.9</td>
<td>0.74</td>
<td>2.64</td>
</tr>
<tr>
<td>27</td>
<td>24-7-80</td>
<td>16</td>
<td>B</td>
<td>13.9</td>
<td>1750</td>
<td>1.9</td>
<td>0.64</td>
<td>2.36</td>
</tr>
<tr>
<td>28</td>
<td>16-5-81</td>
<td>10</td>
<td>C</td>
<td>16.4</td>
<td>856</td>
<td>6.2</td>
<td>0.53</td>
<td>1.85</td>
</tr>
<tr>
<td>29</td>
<td>16-5-81</td>
<td>11</td>
<td>C</td>
<td>16.7</td>
<td>1014</td>
<td>6.8</td>
<td>0.62</td>
<td>1.98</td>
</tr>
<tr>
<td>30</td>
<td>17-5-81</td>
<td>10</td>
<td>C</td>
<td>17.9</td>
<td>217</td>
<td>6.4</td>
<td>0.45</td>
<td>0.84</td>
</tr>
<tr>
<td>31</td>
<td>17-5-81</td>
<td>11</td>
<td>C</td>
<td>17.4</td>
<td>251</td>
<td>5.5</td>
<td>0.36</td>
<td>0.64</td>
</tr>
<tr>
<td>32</td>
<td>24-5-81</td>
<td>16</td>
<td>C</td>
<td>17.1</td>
<td>485</td>
<td>5.5</td>
<td>0.29</td>
<td>0.86</td>
</tr>
<tr>
<td>34</td>
<td>24-5-81</td>
<td>17</td>
<td>C</td>
<td>17.5</td>
<td>497</td>
<td>4.6</td>
<td>0.25</td>
<td>0.99</td>
</tr>
<tr>
<td>35</td>
<td>24-5-81</td>
<td>18</td>
<td>C</td>
<td>18.3</td>
<td>1002</td>
<td>5.2</td>
<td>0.31</td>
<td>0.90</td>
</tr>
<tr>
<td>36</td>
<td>28-5-81</td>
<td>11</td>
<td>A</td>
<td>12.2</td>
<td>823</td>
<td>2.7</td>
<td>0.58</td>
<td>2.02</td>
</tr>
<tr>
<td>37</td>
<td>28-5-81</td>
<td>12</td>
<td>A</td>
<td>13.0</td>
<td>1124</td>
<td>2.6</td>
<td>0.77</td>
<td>2.13</td>
</tr>
<tr>
<td>38</td>
<td>28-5-81</td>
<td>13</td>
<td>A</td>
<td>13.2</td>
<td>1250</td>
<td>3.2</td>
<td>0.82</td>
<td>2.21</td>
</tr>
<tr>
<td>39</td>
<td>28-5-81</td>
<td>18</td>
<td>D</td>
<td>12.7</td>
<td>1851</td>
<td>4.3</td>
<td>0.80</td>
<td>1.37</td>
</tr>
<tr>
<td>40</td>
<td>1-6-81</td>
<td>7</td>
<td>D</td>
<td>16.5</td>
<td>826</td>
<td>7.7</td>
<td>0.22</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Wind speed, U is observed at a height of 187 m.

taken from Hanna and Paine (1987). The values for σ_w are taken from the measurements taken from acoustic sounder. The PG stability is taken from the data reported in EPRI database.

The plume rise is calculated using the formulation for a buoyant plume from Briggs (1969). The fraction of the plume that penetrates the elevated layer is taken in to account (Weil and Brower, 1984) in the computation of plume rise. The modification of the effective stack height for plumes trapped within the mixed layer is based on the assumption that the plume rise due to penetration is linearly varying between $0.62H$ for no penetration to H for full penetration. The values of the parameters required for the plume rise calculation are taken from the measurements (Myers and Reynolds, 1984).

The observed crosswind integrated concentrations are taken from Hanna and Paine (1987). The corresponding concentrations are computed from the present model and the Gaussian model up to a downwind distance of 10 km. In the Gaussian plume model, dispersion parameters estimated from Briggs analytical expressions for rural terrain (Zannetti, 1990) are used.

Fig. 1 gives the scatter diagram of the ratio of the model-predicted to observed concentration versus the
Fig. 1. Ratio of predicted and observed concentrations with observed concentration for the present and Gaussian models.

Fig. 2. Percentage of cases predicted with in a given factor using the present model and the Gaussian model.

Fig. 3. Q–Q plot between the observed and predicted concentrations in µM m$^{-2}$ for the present and Gaussian models. Middle line is the one-to-one line and the outer lines are the lines with factor two.

both the observations and model predictions from highest to lowest and then plotting the ranked observations versus ranked predictions using their magnitudes.

Fig. 3 shows a Q–Q plot for both the present and Gaussian models. Both curves are close to the 1–1 line for the observed concentrations > 800 µM m$^{-2}$. The curve for the Gaussian model falls off quickly below the one-to-one line for observed concentrations < 7000 µM m$^{-2}$ and a major fraction of the predicted concentrations fall below the factor-of-two line. In this case, the concentrations predicted from the present model are relatively closer to the one-to-one line than those computed from the Gaussian model.

4. Conclusions

A mathematical model is formulated by parameterizing the eddy diffusivity as a function of down wind distance from the source for computing the crosswind-integrated concentration in a finite layer released from an elevated/ground-level source. A closed-form solution for the resulting partial differential equation with general functional form of eddy diffusivity is determined using the method of eigen-function expansion. The various particular cases are deduced.

The model with a linear function for eddy diffusivity is validated with the available data in the literature from Copenhagen in Denmark (Gryning et al., 1987) and EPRI experiment at Kincaid in USA (Hanna and Paine, 1987). The agreement is found to be good between the computed and the observed concentrations in both the experiments. In fact, majority of the concentrations...
predicted from the model are with in a factor of two to
observations. In the Copenhagen experiment, the value
of RMSE from the present model (2.38 \times 10^{-4} \text{ s m}^{-2})
is found to be smaller than that from the Gaussian model
(3.49 \times 10^{-4} \text{ s m}^{-2}). In the EPRI experiment, 82% of
the total cases are predicted with in a factor of five from
the present model where it was about 72% in the case of
Gaussian model. The overall performance of the present
model is found to be better than the Gaussian model and
this may be because of the fact that on-site turbulent
observations have been used to estimate the turbulent
intensity. In both the cases, the data used for the
purpose of validation is under convective conditions.
However, the observations for the crosswind-integrated
concentrations in stable conditions are very limited and
the model needs to be validated with the availability of
data in a stable atmosphere. In the present study, an
alternative approach has been proposed for computing
the crosswind-integrated concentration. This approach
takes care for some of the inherent limitations of the
Gaussian model. The proposed model can also be used
for computing the concentration distribution from a line
source.

\begin{equation}
\beta_n = \frac{n \pi}{H} \quad \text{for } n \geq 1. \quad (A.6)
\end{equation}

For \(n = 0 \), \(\beta_0 = 0 \), the solution of (A.2) with
respective boundary conditions is a constant, i.e.,
\begin{equation}
Z_0(x) = A_0' \quad (A.7)
\end{equation}
The general solution of Eq. (A.3) is given by
\begin{equation}
Z_n(x) = d_n \exp \left\{ -\frac{\beta_n^2}{U} \int_0^x K(x') \, dx' \right\}, \quad (A.8)
\end{equation}
where \(d_n \) are constants.
Using relations (A.4), (A.7) and (A.8), solution (A.1)
can be written as
\begin{equation}
\tau(x, z) = A_0 + \sum_{n=1}^{\infty} A_n \cos (\beta_n z)
\times \exp \left\{ -\frac{\beta_n^2}{U} \int_0^x K(x') \, dx' \right\}, \quad (A.9)
\end{equation}
where \(A_n, i = 0, 1, 2, \ldots \) is the set of infinite coefficients.

Acknowledgements

The study is supported partly by the All India Council
for Technical Education, Govt. of India. Authors wish
to thank the reviewers for their valuable comments.

Appendix A

We take the solution of Eq. (7) of the form
\begin{equation}
\tau(x, z) = \sum_n Y_n(x)Z_n(z). \quad (A.1)
\end{equation}

Differentiating (A.1) partially with respect to \(x \) and \(z \)
and substituting in Eq. (7), then we obtain the ordinary
differential equations in \(x \) and \(z \) as for each \(n \)
\begin{equation}
\frac{d^2 Z_n}{dz^2} = -\beta_n^2 \quad (A.2)
\end{equation}
and
\begin{equation}
\frac{dY_n}{dx} = -\frac{K(x)}{U} \beta_n^2, \quad (A.3)
\end{equation}
where \(\beta_n^2 \) is a constant.

The general solution of Eq. (A.2) is given by:
\begin{equation}
Z_n(z) = B_n' \sin (\beta_n z) + A_n' \cos (\beta_n z), \quad (A.4)
\end{equation}
where \(A_n' \) and \(B_n' \) are constants.

Using the boundary conditions obtained from
Eq. 5(a), 5(b) and (A.1) in Eq. (A.4), we find
\begin{equation}
B_n' = 0 \quad \text{for } n \geq 1 \quad (A.5)
\end{equation}

References

Arya, S.P.S., 1995. Modeling and parameterization of near-
source diffusion in weak winds. Journal of Applied
Meteorology 20, 57–73.
Oxford University Press, USA, 330p.
Bower, N.E., Loderger, R.J., Murray, D.R., Borenstein,
M.S., 1985. Overview results and conclusions for the EPRI
Plume Model Validation Project: Plain Site, EA 3074:
EPRI, Palo Alto, CA.
TID-25075, Clearinghouse for Federal Scientific and
Technical Information.
Pollution and Environmental Impact Analyses. Workshop
Proceedings Boston, Mass. 29 September-8 October,
American Meteorological Society, Boston, pp. 59-111.
Chandrasekhar, S., 1943. Stochastic problems in physics and
astronomy. Review of Modern Physics 15, 1–89.
Ermak, D.L., 1977. An analytical model for air pollutant
transport and dispersion from a point source. Atmospheric
Environment 11, 251–237.
Gryning, S.E., Lyck, E., 1984. Atmospheric dispersion from
saturated sources in an urban area: comparison between
tracer experiments and model calculations. Journal of
Climate and Applied Meteorology 23, 651–660.
Applied dispersion modeling based on meteorological
scaling parameters. Atmospheric Environment 21, 79–89.
Atmospheric Diffusion. U.S. Dept of Energy report DOE/
TIC-11273, Washington, DC, 102p.
Hanna, S.R., Pate, R.J., 1987. Convective scaling applied to
diffusion of buoyant plumes from tall stacks. Atmospheric
Environment 21, 2153–2162.