PURIFICATION AND BIOCHEMICAL CHARACTERIZATION OF RECOMBINANT STREPTOMYCIN ADENYLYLTRANSFERASE

by

SNEHASIS JANA

DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY

Submitted in fulfillment of the requirements of the degree of the Doctor of Philosophy to the

INDIAN INSTITUTE OF TECHNOLOGY, DELHI
DECEMBER-2005
CERTIFICATE

This is to certify that the thesis entitled "Purification and Biochemical Characterization of Recombinant Streptomycin Adenylyltransferase" being submitted by Snehasis Jana to the Indian Institute of Technology, Delhi, for the award of the degree of Doctor of Philosophy, is a record of the bonafide research work carried out by him under my supervision and guidance in conformity with the rules and regulations of the Indian Institute of Technology, Delhi. The research work and the results presented in the thesis have not been submitted to any other University or Institute for the award of any other degree or diploma.

J. K. Deb
Associate Professor,
Department of Biochemical Engg. & Biotechnology,
Indian Institute of Technology, Delhi
New Delhi-110016.
ACKNOWLEDGMENT

I would like to thank all those who have contributed to the realization of this thesis. I take this opportunity to express my sincere gratitude Prof. J. K. Deb, my supervisor, for his constant guidance and support at all times and especially deep sense of involvement in my Ph.D work. His creative way of thinking and an analytical approach to the work helped me during experiments. My warmest thanks are due to his helpful advice and encouragement at every stage.

I am grateful Prof. Subhash Chand, Prof. Rakesh Bhatnagar, and Dr. Prashant Mishra for their generous advice and also encouragement throughout the development of this work. Thanks to Prof. Saroj Mishra, the head of the Department, DBEB and all the faculty members for their help and support.

I thank Dr. T. K. Chaudhuri, Dr. P. K. Roychoudhury and Dr. B. Kundu for their friendly and practical advice and their constant encouragement. It has been unforgettable experience to work with all research scholars.

I express my deep gratitude to all my friends Nidhi Gupta, Ch. Ushashri, Rupali Walia, Milli Prabhakar, Shyam Nandi, Ms. Sankari for their constant love, support and affection.

I thank Mr. Swapan Patra for his ways of cheering me up and his willingly lending a hand and his moral support. I also thank Ms. Neera Verma, Mr. Mukesh, Mr. V. K. Ghosh, Mr. Prashant Kumar, Ranaji and Mr. Mehar Chand for their sincere help.

Finally, I thank my parents for their constant love, affection and moral support. My wife Krishna deserves a special mention for her endless love, support and help me to the lab all times. My special thanks to my brother and sisters and bhabiji for their constant moral support and love. I am also thankful to my in laws for their support.

Snehasis Jana
ABSTRACT

Resistance to the aminoglycosides is generally the result of the synthesis of modifying enzymes, which can use ATP to either phosphorylate or adenylate the drugs, or acetylCoA to acetylate them. These modified aminoglycosides are no longer effective antibiotics and thus the cell manifests a resistance phenotype. Aminoglycoside nucleotidyltransferase catalyzes the transfer of nucleotides to the hydroxyl group of aminoglycoside antibiotic, accompanied by the release of pyrophosphate and AMP-Aminoglycoside. One important mechanism of streptomycin modification is through ATP-dependent –O-adenylation, catalyzed by streptomycin adenyllyltransferase (SMATase). The microbial resistance to streptomycin was reported about 35 years ago. So far, no detailed biochemical characterization of SMATase has been described to date. However, the exact biochemical functions of the catalytic motifs in this enzyme have yet to be confirmed by more detailed biochemical and structural studies. Therefore, the present study was undertaken to purify and characterize the recombinant SMATase. Fusion SMATase was purified by Ni2⁺IDA-His-Bind Resin column chromatography. Thioredoxin-His₆ tagged –SMATase fusion protein was produced in a bacterial intracellular expression system mainly in a soluble form. The purified fusion protein showed a single band on SDS–PAGE corresponding to 49 kDa. The recovery of fusion protein was 85% and fold purifications was 22. There was no significant difference in enzyme activity and K_m and V_{max} values of fusion and native SMATase. This suggests that fusion part does not play any role in the enzymatic activity of SMATase. The dissociation constant (K_d) value was 9.02 ± 0.22 μM and the total binding sites (B_{max}) was 101.72 ± 2.54 μmol/mg protein. Initial velocity and dead-end inhibition studies showed that SMATase followed an ordered sequential mechanism.
Native SMATase possesses secondary structural content with 65% \(\alpha \)-helix, 9% \(\beta \)-sheet, 4% \(\beta \)-turn, and 22% random coil. The analysis of the CD features for the determination of secondary structural class reveals that it is predominantly \(\alpha \)-type protein. Far-UV CD and fluorescence spectroscopy probed the structure-function relationship of SMATase. The denaturation data indicates that the protein undergoes complete denaturation in 6 M GdnHCl. The effect of GdnHCl on the native conformation of protein is attributed to its destabilization of hydrogen bond and ionic interactions. It was observed that there was a concomitant decrease of enzyme activity with the loss of secondary structure. This happens due to its conformational change by GdnHCl. Comparative fluorescence emission spectra of SMATase at four GdnHCl concentrations, viz., 1, 2, 4, and 6 M were recorded. With progressive increase in GdnHCl concentration up to 6 M, the relative fluorescence intensity gradually decreases, indicating alteration of the protein conformation. Also, the emission maximum \((\lambda_{max}) \) is red shifted (343 to 348 nm) by 5 nm as the protein encounters high denaturant concentration, which indicates that the microenvironment of aromatic amino acids (Trp residues) is getting exposed to more polar region. This result indicated that at 6 M GdnHCl, SMATase was existed in a conformation that was different from the native conformation. Conformational stability experiments under native and GdnHCl-induced denatured state of SMATase, proved that \(\alpha \)-helices were essential for the enzyme activity. Quenching studies of SMATase revealed that nearly all Trp residues were quenched by non-ionic quencher acrylamide, however, the ionic quencher potassium iodide could quench only 80% of intrinsic tryptophan fluorescence. This result may reflect the fact that, although most of the tryptophan residues in SMATase are in the polar environment, at least one out of four Trp residues is buried in the polar region, which is not accessible to the ionic quencher potassium iodide.
CONTENTS

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ix - xvii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xviii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF ABBREVIATIONS</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xix - xx</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION AND OBJECTIVES 1 - 7

1.1 Introduction 2
1.2 Objectives 7

CHAPTER 2 LITERATURE REVIEW 8 - 28

2.1 Chemical structure and characteristics of aminoglycosides 9
2.2 Mechanism of action 14
2.3 Spectrum of activity 16
2.4 Therapeutic applications of aminoglycosides 17
2.5 Streptomycin resistance 19
2.6 Mechanisms of aminoglycoside resistance 21
2.6.1 Prevention of drug entry 21
2.6.2 Active drug extrusion 22
2.6.3 Alteration of the antibiotic target site 23
2.6.4 Enzymatic modification of drug 23
2.7 Circumvention of aminoglycoside resistance 27
2.7.1 Synthesis of semisynthetic aminoglycosides 27
2.7.2 Design of specific inhibitors targeted toward the active site containing aminoacid 28
2.7.3 Development of suicide inhibitors 28
CHAPTER 3 MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Bacterial strains and plasmids</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Isolation of plasmid DNA</td>
<td>30</td>
</tr>
<tr>
<td>3.2.1 Small scale preparation</td>
<td>30</td>
</tr>
<tr>
<td>3.2.2 Large scale preparation</td>
<td>31</td>
</tr>
<tr>
<td>3.3 Colony lysis of rapid screening of plasmid DNA</td>
<td>31</td>
</tr>
<tr>
<td>3.4 Agarose gel electrophoresis</td>
<td>32</td>
</tr>
<tr>
<td>3.5 Restriction enzyme digestion</td>
<td>32</td>
</tr>
<tr>
<td>3.6 DNA elution from Agarose gel</td>
<td>33</td>
</tr>
<tr>
<td>3.6.1 Freeze squeeze method</td>
<td>33</td>
</tr>
<tr>
<td>3.6.2 Qiagen QIAluick gel extraction kit method</td>
<td>33</td>
</tr>
<tr>
<td>3.7 End filling of recessed 3' termini of double stranded DNA</td>
<td>34</td>
</tr>
<tr>
<td>3.8 Blunt end ligation of DNA</td>
<td>35</td>
</tr>
<tr>
<td>3.9 Transformation of E. coli</td>
<td>35</td>
</tr>
<tr>
<td>3.10 Screening of recombinant clones</td>
<td>36</td>
</tr>
<tr>
<td>3.11 Expression study of recombinant clone</td>
<td>36</td>
</tr>
<tr>
<td>3.12 Native and SDS-PAGE gel electrophoresis</td>
<td>36</td>
</tr>
<tr>
<td>3.13 Assay of streptomycin adenyllyltransferase (SMATase)</td>
<td>37</td>
</tr>
<tr>
<td>3.14 Purification of fusion protein SMATase</td>
<td>38</td>
</tr>
<tr>
<td>3.14.1 Production of fusion SMATase</td>
<td>38</td>
</tr>
<tr>
<td>3.14.2 Purification by metal affinity chromatography</td>
<td>38</td>
</tr>
<tr>
<td>3.15 Determination of protein concentration</td>
<td>39</td>
</tr>
<tr>
<td>3.16 Western blot analysis</td>
<td>39</td>
</tr>
<tr>
<td>3.17 Cleavage of fusion SMATase</td>
<td>39</td>
</tr>
<tr>
<td>3.18 Recovery of SMATase from native polyacrylamide gel</td>
<td>40</td>
</tr>
</tbody>
</table>
by the syringe maceration extraction (SME) method

3.19 Molecular weight determination by SDS-PAGE 40
3.20 pH optima 41
3.21 Temperature optima 41
3.22 Radioligand binding assay 41
3.23 Determination of kinetic parameters 42
3.24 Data analysis 42
3.25 Spectroscopic analysis of SMATase by circular dichroism and fluorescence spectroscopy 43
3.25.1 Buffers and solutions 43
3.25.2 Secondary structure determination by far UV-CD spectroscopy 43
3.25.3 Guanidine hydrochloride (GdnHCl) induced denaturation study 44
3.25.4 Fluorescence study 44
3.25.4.1 Binding of ANS 45
3.25.4.2 Denaturation of SMATase in the presence of ANS 45
3.25.4.3 Quenching studies 45

CHAPTER 4 RESULTS AND DISCUSSION 47 - 102
4.1 Construction of expression vector 48
4.2 Sequencing and analysis 52
4.3 Optimization of expression conditions 54
4.3.1 Optimization of Culture media 54
4.3.2 Comparison of enzyme activity at 30°C and 37°C 57
4.3.3 Optimization of IPTG concentration and induction period 57
4.3.4 Large scale expression in shake flask 62
4.4 Purification of SMATase 65

4.4.1 Purification of fusion SMATase 65

4.4.2 Site-specific cleavage of fusion SMATase 69

4.5 Characterization of SMATase 71

4.5.1 Molecular weight determination by SDS-PAGE 71

4.5.2 pH and Temperature optima 72

4.5.3 Radioligand binding assay 72

4.5.4 Kinetic analysis 75

4.5.4.1 Initial velocity 77

4.5.4.2 Kinetics in the presence of dead end inhibitors 79

4.6 Structure-activity relationship of SMATase 88

 by spectroscopic techniques

4.6.1 CD spectra of native and denatured SMATase 88

4.6.2 Conformational changes and enzyme activity of SMATase 92

 monitored by far UV-CD Spectroscopy

4.6.3 Intrinsic tryptophan fluorescence 94

4.6.4 ANS binding and surface property of SMATase 97

4.6.5 Quenching studies 100

CHAPTER 5 SUMMARY AND CONCLUSION 103 - 107

CHAPTER 6 REFERENCES 108 - 118

APPENDICES 119 - 125

BIODATA OF THE AUTHOR 126 - 127