DEVELOPMENT OF 17-α-HYDROXY PROGESTERONE IMMUNOASSAY USING DIFFERENT SPACERS IN IMMUNOGEN AND ENZYME CONJUGATE

by

VINAY TRIPATHI

Centre for Biomedical Engineering

Submitted
in fulfillment of the requirement of the degree of
Doctor of Philosophy

to the

INDIAN INSTITUTE OF TECHNOLOGY, DELHI
FEBRUARY, 2010
Dedicated to my late friend Bhupi...
Acknowledgement

I express my deep sense of gratitude to my PhD supervisors Prof. T.G. Shrivastav, Professor, Department of Reproductive Biomedicine, National Institute of Health and Family Welfare and Prof. Harpal Singh, Centre for Biomedical Engineering, Indian Institute of Technology, Delhi for supervising me for Ph.D research work. I would like to thank Prof. T.G. Shrivastav for giving me the insight into the discipline of immunodiagnostics. His sincerity, punctuality, disciplined and untiring attitude inspired me to complete this research work. I owe a lot to Prof. Harpal Singh for his continuous encouragement, invaluable support, timely guidance and suggestions which helped me a lot in my research work.

I would like to extend my thanks to Dr. Deoki Nandan, Director and Prof. K. Kalaivani, Head, Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, for their kind support and providing necessary facilities.

The present work would never have been possible without the constant support of my colleague of Seema Nara I would always be indebted to her for her contribution to this study.

I wish to express my sincere gratitude to Prof. Sneh Anand, Head, CBME, IITD, and all faculty members of CBME for their valuable suggestions, advice and approval of my thesis work.

My special thanks to Dr. Kiran Rangari and Dr. Anupam Basu for their co-operation, help and moral support. Time spent in the company of Dr. Kiran Rangari especially during the conferences will be in my memory forever.

I wish to thank all the summer trainees in the laboratory specially Mr. Pawan Kanaujia and Ms. Kamya, for their timely help during the research work and outstanding support. I also thank Ms. Charu, Ms. Vasundhara and Mr. Ravi for all their help and cooperation.

I had the pleasure to work with Ms. Anjali Nagendra, Mr. Suman Kumar, Ms. Shabana Khatun, Mrs. Ramya and Mr. Mahesh Kaushik, I thank all of them for always cheering me up. Working with them was a nice experience.

I owe thanks to my colleagues - Ms. Geeta Suhag, Ms. Charu Tyagi, Mr. Lomas Tomar, Ms. Supriya Puniyani, Mr. Amit Tyagi, Ms. Richa Jackary, Ms. Swati, Mr. Rajkumar, Mr. Muman, Mr. Gurpal, Mr. Manoj, Dr. Shruti and Mr. Sitaram for their prompt help during my research work.
I also thank my friends Rahul, Sanjay sir, Ujjwal sir, Gaurav, Pradeep, Hafeez, Uday and Farhat for always being with me.

I would also like to extend my thanks to our laboratory attendant Mr. Bikram Rawat for keeping the lab clean and giving his help whenever needed. I also record my thanks to all the rabbits I had to sacrifice during the study and our animal house attendants.

I wish to acknowledge University grants commission for providing me financial assistance which helped me to carry out my research smoothly.

I would like to thank Mr. Jamir & Pandey Ji for their technical support in bringing this thesis in the presentable form.

I would never have been able to complete my thesis in the absence of my loving family. I am really blessed to have such loving mother and father who always understood me and fully supported me in all my endeavours from all walks of life. I thank my sisters, Renu and Vineeta, my brother Vibhor, my two cute little nieces Shyamshahi and Shankari, my jija ji, my sisters in law Reena and Navita, my brother in law Vishal, my mother in law and late father in law for all their support and blessings.

At last but not the least, I would like to thank my lovely wife Seema for taking all the pains and patiently supporting me all the way. I thank GOD for sending a little angel Vernica, my daughter, who has changed my world forever.

Vinay Tripathi
Abstract

17-α-hydroxy-progesterone is a clinically important steroid hormone which is mainly secreted by zona fasciculata cells of adrenal glands and is routinely measured to screen the patients of congenital adrenal hyperplasia (CAH), a disorder of the steroid biosynthetic pathway observed due to the malfunctioning of enzymes involved in the conversion of cholesterol to cortisol. The classical form of CAH is characterized by severe salt wasting and presence of pheno-typically altered genitalia by birth, whereas non-classical CAH manifests postnatally and mainly presents symptoms of hirsuitism and amenorrhoea. As 17-α-OH-P is an effective indicator for monitoring 21-hydoxylase functioning, its accurate and reliable measurement in serum is thus required in the diagnosis and management of CAH. Radioimmunoassays have been widely used for 17-α-OH-P estimation but they have been replaced by non-isotopic labels due to their inherent radiation hazards, disposable problems and license requirements. Among the non-isotopic assays enzyme immunoassays have been preferred over fluoroimmunoassay, chemiluminescent and bioluminescent immunoassays because of their simplicity and cost-effectiveness. The enzyme immunoassays reported so far for 17-α-OH-P estimation are either not very sensitive which is a requirement for post therapeutic management of CAH or are not very specific showing varying degree of cross-reactions with other analogous steroids.

The present study has been taken up to develop a sensitive, specific and rapid ELISA for 17-α-OH-P by modifying the immunogen and enzyme conjugates using various spacer molecules. N-hydroxy succinimide-carbodiimide reaction has been used to prepare the immunogen and enzyme conjugates with various spacer molecules using 17-α-OH-P-3-CMO as hapten and HRP and BSA as enzyme and carrier protein respectively. In the first approach, immunogen and enzyme conjugate were prepared to develop a homologous immunoassay without having any spacer molecule in enzyme conjugate and immunogen. A very good
immunoreactivity of the enzyme conjugate 17-α-OH-P-3-CMO-HRP was observed with anti-17-α-OH-P-3-CMO-BSA antibody. The immunoassay was highly specific with very good sensitivity of 0.18 ng/ml. This assay was further validated for analytical recovery, precision and its correlation with EQUAS scheme and well established RIA kit.

In another approach, six homobifunctional spacers namely, urea (U), carbohydrazide (CH), adipic acid dihydrazide (ADH), ethylene diamine (ED), gammaaminobutyricacid-urea (GU) and 6-aminocaproicacid-urea (AU) were used for preparing the enzyme conjugate with an aim to improve the sensitivity of the homologous assay without any significant compromise with the assay specificity. 17-α-OH-P-3-CMO-CH-HRP, 17-α-OH-P-3-CMO-ADH-HRP, 17-α-OH-P-3-CMO-U-HRP, 17-α-OH-P-3-CMO-ED-HRP, 17-α-OH-P-3-CMO-GU-HRP and 17-α-OH-P-3-CMO-6-ACA-HRP enzyme conjugates were characterized by Matrix Assisted Laser Desorption Ionisation—Time of Flight (MALDI-TOF) to know the steroid density and confirm the coupling of 17-α-OH-P-HRP. The immunoreactivity of anti 17-α-OH-P-3-CMO-BSA antibody was evaluated with these 17-α-OH-P-spacer-HRP conjugates. The use of spacer in enzyme conjugates improved the homologous assay sensitivity without any significant compromise on the specificity except in case of 17-α-OH-P-3-CMO-ADH-HRP where cross reaction was observed to be twice of the homologous assay. The assay using 17-α-OH-P-3-CMO-CH-HRP was found to have the best sensitivity of 0.008 ng/ml among the bridge heterologous assays by inserting spacer in the enzyme conjugate whereas with use of 17-α-OH-P-3-CMO-ADH-HRP the assay sensitivity was 0.06ng/ml which was least of all the bridge heterologous assays. The better assay sensitivity with the use of 17-α-OH-P-3-CMO-CH-HRP was mainly attributed to the efficiency of the conjugate in reducing the bridge binding and steric hindrance (in homologous assays) due to the presence of a five atom CH as a spacer molecule which is highly hydrophilic and rigid due to the presence of polar groups and mesomeric effect in the
entire molecular chain length. But the presence of 4 hydrophobic methylene units in ADH renders the enzyme conjugate flexible enough so that steroid may easily fold to get buried either in the methylene units or in the hydrophobic pockets in the enzyme, resulting in decreased immunoreactivity and the ability to counter the steric hindrance posed by the enzyme. These methylene units in ADH also interact with the Ab due to hydrophobic interaction resulting in tighter binding of the enzyme conjugate thereby decreasing the sensitivity of the competitive assay. Moreover, the methylene units interact with the other steroids and solid phase by hydrophobic interactions to give higher cross reactions and non specific binding. All the other enzyme conjugates with hydrophilic spacers showed better assay sensitivity and specificity than with the use of 17-α-OH-P-3-CMO-ADH-HRP. The assay using 17-α-OH-P-3-CMO-CH-HRP was further validated for recovery, precision and correlation studies.

ADH, ED and 6-ACA-GABA-ADH spacers were also used for preparing immunogens and resulted in generation of anti-17-α-OH-P-3-CMO-ADH-BSA, anti-17-α-OH-P-3-CMO-ED-BSA and anti-17-α-OH-P-3-CMO-6-ACA-GABA-ADH-BSA BSA antibodies respectively which were evaluated for their tryptophan (Trp) fluorescence to analyze the effect of the spacers in the immunogens on the quality of the resulting antibodies. Anti-17-α-OH-P-3-CMO-BSA antibody which was generated against immunogen without any spacer showed highest immunoreactivity and Trp fluorescence. Though anti-17-α-OH-P-3-CMO-ED-BSA Ab gave good binding with five out of the seven enzyme conjugates used and its Trp fluorescence was comparable to the anti-17-α-OH-P-3-CMO-BSA antibody, it did not give displacement with the enzyme conjugate studied. Anti-17-α-OH-P-3-CMO-6-ACA-GABA-ADH-BSA Ab gave binding and displacement with only two enzyme conjugates, while 17-α-OH-P-3-CMO-ADH-BSA did not give binding with any of the enzyme conjugates used and their Trp fluorescence was low compared to anti-17-α-OH-P-3-CMO-ED-BSA Ab. Both
the immunoassays thus developed using anti-17-α-OH-P-3-CMO-6-ACA-GABA-ADH-BSA Ab were highly non specific showing almost five times cross reaction compared to the homologous assay having no spacer molecule in either of the immunoconjugates. It was concluded that spacers can be used for modifying and preparing the enzyme conjugates for improving the assay sensitivity instead of inserting them in the immunogens.

A colloidal gold based rapid, immunochromatographic strip for 17-α-OH-P was developed by utilizing anti-17-α-OH-P-3-CMO-BSA antibody and 17-α-OH-P-3-CMO-BSA–Gold conjugate. Gold nanoparticles were synthesized and characterized using various techniques. The size of NPs was 36nm with a zeta potential of -44.1mV as determined by Dynamic light scattering. AFM of 17-α-OH-P-3-CMO-BSA-Gold conjugate showed a distinct change in the surface topography as compared to the bare gold NPs. The immunochromatographic strip was prepared by coating anti-17-α-OH-P-3-CMO-BSA antibody at the capture line, anti-BSA antibody at the control line and 17-α-OH-P-3-CMO-ADH-BSA-gold conjugate on reservoir matrix. Competitive inhibition assay was developed on this strip by using 17-α-OH-P standards of different concentrations. The lower detection limit of the developed assay was found to be 1.25 ng/ml by visual observation. The strip was semi-quantitative but took less than 20 min for result development as compared to 80min required in quantitative ELISA.
Contents

Chapter I - Introduction and literature review

1. Introduction 1

1.1. 17-α-hydroxy-progesterone 2

1.1.1. Biosynthesis and regulation 2

1.1.2. Clinical implications of impaired 17-α-hydroxy-progesterone levels 4

1.2. Analytical techniques for detection of biological compounds 6

1.2.1. Bioassays 6

1.2.2. Physical and chemical methods 6

1.2.3. Binding assays 7

1.2.3.1. Classification of immunoassay 8

1.3. 17-α-hydroxy-progesterone estimation in biological fluids 10

1.3.1. Competitive protein binding assays 10

1.3.2. Physical methods 11

1.3.3. Immunoassay 12

1.3.3.1. Radioimmunoassay 12

1.3.3.2. Enzyme linked immunosorbent assay 13

1.3.3.3. Fluorescence and luminescent immunoassays 14

1.4. Rationale and objectives of the present work 15

References 21
Chapter II - Development of ELISA for 17-α-hydroxy-progesterone without any spacer in immunogen and enzyme conjugate

2.1. Introduction

2.2. Experimental

2.2.1. Materials

2.2.2. Composition of buffers for coating, blocking and preparation of immunoreagents

2.2.3. Immunogen preparation

2.2.4. Immunogen characterization

2.2.4.1. Bradford assay

2.2.4.2. UV spectroscopic characterization

2.2.5. Immunization and collection of antiserum and normal rabbit serum (NRS)

2.2.6. Purification of the IgG fraction from antiserum and NRS

2.2.7. Preparation of 17-α-OH-P-3-CMO-HRP enzyme conjugate

2.2.8. MALDI-TOF Characterization of 17-α-OH-P-3-CMO-HRP enzyme conjugate

2.2.9. Evaluation of antibody and enzyme conjugate by checkerboard assay

2.2.10. Evaluation of the assay parameters for competitive ELISA of 17-α-OH-P

2.2.11. Validation of immunoassay for 17-α-OH-P

2.3. Results and Discussion

2.3.1. Immunogen Preparation

2.3.2. Immunogen Characterization

2.3.2.1. Bradford protein estimation of immunogens

2.3.2.2. Hapten density of immunogens by UV spectrophotometry

2.3.3. Preparation of 17-α-OH-P-3-CMO-HRP enzyme conjugate
2.3.4. MALDI-TOF characterization of enzyme conjugate 44
2.3.5. Evaluation of antibody and enzyme conjugate by checkerboard 45
2.3.6. Evaluation of the assay parameters for competitive ELISA of 17-α-OH-P 48
2.3.7. Assay validation 52
2.4. Conclusion 55
References 56

Chapter III - Development of ELISA for 17-α-hydroxy progesterone using different spacers in enzyme conjugate

3.1. Introduction 58
3.2. Experimental 63

3.2.1. Materials 63

3.2.2. Composition of buffers for coating, blocking and preparation of immunoreagents 63

3.2.3. Preparation of enzyme conjugates using different spacers 63

3.2.4. Characterization of spacer containing enzyme conjugates 65

3.2.5. Evaluation of the spacer containing enzyme conjugates with anti-17-α-OH-P-3-CMO-BSA Ab by checkerboard assay 67

3.2.6. Evaluation of the assay parameters for competitive ELISAs developed for 17-α-OH-P with spacer containing enzyme conjugates 68

3.2.7. Validation of immunoassay for 17-α-OH-P with spacer in enzyme conjugate 69

3.3. Results and Discussion 70

3.3.1. Preparation of enzyme conjugates using different spacers 70

3.3.2. Hapten density of enzyme conjugates by MALDI-TOF spectrometry 71

3.3.3. Evaluation of six spacer containing enzyme conjugates with anti-17-α-OH-P-3-CMO-BSA Ab by checkerboard assay 79
Chapter IV - Development of ELISA for 17-α-hydroxy progesterone using different spacers in immunogen

4.1. Introduction

4.2. Experimental

4.2.1. Materials

4.2.2. Composition of buffers for coating, blocking and preparation of immunoreagents

4.2.3. Preparation of immunogen with spacers

4.2.4. Immunogen characterization

4.2.5. Immunization and collection of antiserum against spacer containing immunogens

4.2.6. Purification of the IgG from antiserum against spacer containing immunogens

4.2.7. Evaluation of antibodies by checkerboard assays with different enzyme conjugates

4.2.8. Evaluation of the assay parameters for competitive ELISAs of 17-α-OH-P

4.2.9. Trp fluorescence measurement of all anti 17-α-OH-P antibodies

4.3. Results and Discussion

4.3.1. Immunogen preparation using different spacers

4.3.2. Immunogen characterization

4.3.2.1. Bradford protein estimation of immunogens

4.3.3.2. Determination of hapten density of immunogens by UV Spectrophotometry
Chapter V - Development of rapid lateral flow immunochromatographic strip assay for 17-α-hydroxy progesterone using colloidal gold

5.1. Introduction

5.2. Experimental

5.2.1. Materials

5.2.2. Buffers for preparation and storage of gold nanoparticles and gold conjugates

5.2.3. Preparation of colloidal gold nanoparticles

5.2.4. Preparation of protein conjugate of the colloidal gold

5.2.4.1. Stabilization of colloidal gold with the 17-α-OH-P-3-CMO-BSA

5.2.4.2. Optimization of pH for conjugation

5.2.4.3. Formulation of 17-α-OH-P-BSA-gold conjugate

5.2.5. Characterization of colloidal gold and its protein conjugate

5.2.6. Preparation and immobilization of immunoreagents

5.2.7. Assay principle and procedure

5.3. Results and Discussion

5.3.1. Preparation of gold nanoparticles

5.3.2. Preparation of protein conjugate of the colloidal gold

5.3.2.1. Stabilization of colloidal gold with the 17-α-OH-P-3-CMO-BSA

5.3.2.2. Optimization of pH for bioconjugation

5.3.3. Characterization of colloidal gold and its protein conjugate
5.3.4. Preparation and immobilization of Immunoreagents 134

5.3.5. Assay principle and procedure 135

5.4. Conclusion 136

References 137

Chapter VI - Summary and scope for future work

6.1 Summary 138

6.2 Scope for future work 142