STUDIES ON LIQUID AND SUPERCRITICAL FLUID EXTRACTION OF NATURAL PLANT PRODUCTS

By
SATYA NARAYAN NAIK

A THESIS SUBMITTED TO THE INDIAN INSTITUTE OF TECHNOLOGY, DELHI FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY

Centre for Rural Development & Technology
INDIAN INSTITUTE OF TECHNOLOGY, DELHI APRIL, 1989
CERTIFICATE

This is to certify that the thesis entitled, "STUDIES ON LIQUID AND SUPERCRITICAL FLUID EXTRACTION OF NATURAL PLANT PRODUCTS" being submitted by Mr. Satya Narayan Naik to the Indian Institute of Technology, Delhi for the award of Doctor of Philosophy is a record of bonafide research work carried out by him under my guidance and supervision in conformity with the rules and regulations, of Indian Institute of Technology, Delhi.

The results contained in this thesis have not been submitted, in part or in full, to any other university or Institute for the award of any degree or diploma.

(R.C. MAHESHWARI)
Centre for Rural Development and Technology
Indian Institute of Technology, Delhi
New Delhi 110 016, INDIA
ACKNOWLEDGEMENTS

It is my privilege to have worked under the worthy guidance of Dr. R.C. Maheshwari to whom I am sincerely indebted for sparing his valuable time in active participation and discussion.

My sincere gratitude is due to Prof. (Mrs) Padma Vasudevan, Head RDAT for providing necessary facilities and constant encouragement for carrying out this research work.

I also owe my sincere thanks to Prof. Lentz, and Dr. Mihm of University of GH Siegen (West Germany) for rendering help in apparatus design and giving me ample opportunity to work in their laboratory.

Thanks are also due to Dr. Maheshwari and Dr. Srivastava, NBPG, New Delhi for their help in identifying the plant materials required for this research work.

I am also bound to recollect the help of Dr. Ashok Gupta, Department of Chemical Engineering, in the discussion of Mass Transfer studies.

Financial support provided by Indian Institute of Technology, Delhi and Volks Wagen Research Foundation, Hanover (W.G.) is gratefully acknowledged.
I am also thankful to the faculty of Centre for Rural Development and Technology, for supporting me in resolving some of my difficulties encountered during research work.

My deep sense of gratitude is also extended to my parents, uncle, aunt and other family members who have always been a perpetual source of inspiration and encouragement since my childhood days.

My wife Jyoti's incessant pestering and prayers have helped me in completing this task so successfully.

I am also thankful to Shri R.N. Sharma for scientific editing of this thesis. At last but not the least, I accomplish happily the selfless help and cooperation of my esteemed friends Ashok, Rajeev, Babtosh, Ashis, Jain, Srivastava, Gali, Pratap, Saroj, Ajit, Dibya, Satyavir Kandpal and Vimal, who have supported in many ways in this venture.

The clean and efficient typing of this thesis by M/s. Friends Computer Centre is also acknowledged.

(S.N. NAIK)
NOTATIONS

SCF = Supercritical fluid
SC-CO₂ = Supercritical carbon dioxide
TLC = Thin Layer Chromatography
G.C. = Gas chromatography
H P = High pressure
min = minute
max = maximum
hrs = hours
nm = nanometer
M P = Melting point
B P = Boiling point
D = Diffusion coefficient
r = radius
\(r_o \) = average radius of spherical particle/half thickness of flake particle/radius of cylindrical particle.
\(E_{icm} \) = molar absorptivity of unknown compound
Y = percentage yield
\(Y_h \) = highest yield
\(Y_\infty \) = percentage yield after infinite extraction time
U = fraction of essential oil extracted at any time.
KJ = Kilo Joules
mcg = micro gram
Sp.gr. = Specific gravity
mm = millimeter
m = meter
i.d. = internal diameter
o.d. = outer diameter
ABSTRACT

In the recent years, there has been great interest in liquefied and supercritical gas extraction in chemical industries. In view of this, the status of conventional and liquid/SCF extraction processes have been critically reviewed with special reference to essential oils, food flavours and pharmaceutical substances. Accordingly varieties of plant materials of Indian origins were selected for extraction/fractionation of essential oils and pharmacologically active compounds in liquid/SCF. The selected plant materials were classified in three categories, viz

Spices: cardamom, celery, cumin, cumin black, chilli, clove, ginger, fennel, mace, parsley and turmeric.

Perfumery Plants: rosemary, sage, sandalwood and vetiver.

Medicinal: Kalmegh, malkanguni, periwinkle and Jatamansi.

Two apparatus have been designed to study above mentioned plant materials in liquid/SCF extraction process. 1. High Pressure soxhlet apparatus for liquefied gas extraction. 2. Laboratory model liquid/supercritical fluid extraction apparatus for process optimization and fractionation.
These two apparatuses were fabricated by taking all safety measures into consideration in accordance with safety rules and regulations.

The percentage yields with different extraction time for various plant materials were determined in liquid CO₂ extraction and a mathematical equation for calculating the percentage yields have been suggested on the basis of experimental results. The spherical, cylindrical and flake unsteady state mathematical models were used to obtain mass transfer coefficient parameter (D/r²₀) in liquid CO₂ extraction. The determined values of (D/r²₀) were used to calculate the percentage yields and the computed values of percentage yields were correlated with experimental data.

The extracts obtained in liquid/SCF extraction and conventional processes were analysed and compared by TLC and GC analysis by adopting standard procedure as reported in the literatures. The structure of the crystalline substance obtained from parsley seed was determined as seseline by mass, IR and NMR studies. The extracts of medicinal plants were also subjected to TLC, IR and UV analysis for identifying active components.

A combined process (solvent extraction and ammonization) has been suggested for detoxification of groundnut and cotton seed meals to reduce aflatoxins within permissible level.
From the above studies, the following points were emerged in favour of liquid/supercritical fluid extraction:

(i) The yields obtained by liquid CO$_2$ extraction is higher than those obtained by steam distillation.

(ii) The time and energy requirement in liquid CO$_2$ extraction process is less than that require in steam distillation process.

(iii) The analysis of essential oils obtained by liquid CO$_2$ extraction process shows less monoterpenic hydrocarbons.

(iv) The active constituents of medicinal plants like andrographolide, malkanaguni, etc. were successfully extracted in liquid and SC-CO$_2$. But for alkaloids separation the liquid and SC-NH$_3$ have been found suitable.

(v) Subcritical state is favourable particularly to essential oil extraction.
CONTENTS

ABSTRACT

CHAPTER I INTRODUCTION

1.1 Essential Oils
1.2 Utilization
1.3 Conventional Processes for Production of Essential Oils, Odours, and Aroma
1.4 Extraction with Compressed Gases
1.5 Fundamental of Compressed Gas Extraction
1.6 Compressed Gases as Extraction Agents
1.7 Review of Earlier Work on Liquid CO₂ Extraction
1.8 Review of Work on Supercritical Fluid Extraction
1.9 Review on Extraction of Essential Oils, Food Flavours and Pharmaceutical with SC-CO₂
1.10 Statement on Extraction Problem.

BIBLIOGRAPHY

CHAPTER II APPARATUS DESIGN

2.1 Design of a High Pressure Gas Extraction Apparatus and Its Operation
2.2 Pressure Vessel Design
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Material Selection</td>
<td>59</td>
</tr>
<tr>
<td>2.4</td>
<td>High Pressure Tube</td>
<td>60</td>
</tr>
<tr>
<td>2.5</td>
<td>Valves</td>
<td>61</td>
</tr>
<tr>
<td>2.6</td>
<td>Connections and Fittings for High Pressure Apparatus</td>
<td>62</td>
</tr>
<tr>
<td>2.7</td>
<td>Windows</td>
<td>62</td>
</tr>
<tr>
<td>2.8</td>
<td>Closure</td>
<td>63</td>
</tr>
<tr>
<td>2.9</td>
<td>Pressure Gauge</td>
<td>63</td>
</tr>
<tr>
<td>2.10</td>
<td>Pump</td>
<td>64</td>
</tr>
<tr>
<td>2.11</td>
<td>Pressure Vessel Design and Its Calculation</td>
<td>65</td>
</tr>
<tr>
<td>2.12</td>
<td>Description of Jenning High Pressure Soxhlet Apparatus</td>
<td>68</td>
</tr>
<tr>
<td>2.13</td>
<td>High Pressure Soxhlet Apparatus with Visual Windows</td>
<td>69</td>
</tr>
<tr>
<td>2.14</td>
<td>Design of Supercritical or Liquid Carbon dioxide Extraction Apparatus</td>
<td>73</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER III MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Plant Materials</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Procurement of Plant Materials</td>
<td>99</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of Material</td>
<td>100</td>
</tr>
<tr>
<td>3.4</td>
<td>Experimental Methods</td>
<td>100</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.4 Objective of Detoxification 239
6.5 Detoxification Process 240
6.6 Experimental Work 243

BIBLIOGRAPHY 248

CHAPTER VII SUMMARY AND CONCLUSION

7.1 Summary 250
7.2 Conclusion 255
7.3 Scope for Future Work 261
7.4 Possible Industrial Applications of the Technology 263

BIBLIOGRAPHY 265

APPENDIX

LIST OF PUBLICATION/PAPER PRESENTED