EXTREMAL PROPERTIES AND COEFFICIENT ESTIMATES
FOR POLYNOMIALS WITH RESTRICTED ZEROS AND ON
LOCATION OF ZEROS OF POLYNOMIALS

KUM KUM DEWAN

Thesis submitted to the Indian Institute of Technology, Delhi
for the award of the degree of
DOCTOR OF PHILOSOPHY
in Mathematics

Department of Mathematics
Indian Institute of Technology, Delhi
Hauz Khas, New Delhi-110029.

FEBRUARY, 1980
I gratefully acknowledge my indebtedness to my research supervisor Professor N.K. Govil. To thank him is but to inadequately express my gratitude to him, for inspite of heavy demands on his time, he always encouraged free discussions on the subject and has extended unflagging guidance and advise at every stage of my study. But for the profuse and generous assistance always extended by him it would not have been possible to complete this thesis.

I also express my sincere thanks to Professor Z.H. Faruqi, Principal, Jamia College and to the other authorities of Jamia Millia Islamia for granting me study leave for three years under the Faculty Improvement Programme of U.G.C.

I would like to take this opportunity to thank Professors O.P. Bhutani, M.P. Singh and M.K. Jain for their constant encouragement and extending all the facilities in the department.

Apart from other friends and colleagues I owe special acknowledgement to Miss Neelam Dhody who has typed this thesis accurately, competently and cheerfully.

Above all, it is a pleasure to acknowledge the cooperation of my husband and my mother which enabled me to complete this work.

(K.K. Dewan)

(KUM KUM DEWAN)
This thesis consists of three chapters. The first chapter deals with the extremal properties of a polynomial. In the second chapter we have studied the problems concerning the location of zeros of a polynomial and in the third chapter some coefficient problems for polynomials have been considered.

If \(p(z) = \sum_{v=0}^{n} a_v z^v \) is a polynomial of degree \(n \), then according to Bernstein's theorem

\[
\max_{|z|=1} \left| p'(z) \right| \leq n \max_{|z|=1} |p(z)|, \tag{1}
\]

\[
\max_{|z|=R \geq 1} |p(z)| \leq R^n \max_{|z|=1} |p(z)|, \tag{2}
\]

\[
\int_{0}^{2\pi} |p'(e^{i\theta})|^2 \, d\theta \leq n^2 \int_{0}^{2\pi} |p(e^{i\theta})|^2 \, d\theta \tag{3}
\]

and

\[
\int_{0}^{2\pi} |p(Re^{i\theta})|^2 \, d\theta \leq R^{2n} \int_{0}^{2\pi} |p(e^{i\theta})|^2 \, d\theta \tag{4}
\]

Lax [48] and Ankeny and Rivlin [3] considered the class of polynomials \(p(z) \) having no zeros inside the unit circle and obtained inequalities analogous to (1) and (2). Rahman [67] considered the class of polynomials having no zero in \(|z| < K, K \leq 1 \) and obtained the inequalities analogous to (3) and (4). The class of polynomials having no zero in \(|z| < K, K \geq 1 \) was studied by Malik [49]. (Also see Govil...
and Rahman [35]). Govil, Jain and Labelle [33] considered the class of polynomials satisfying \(p(z) = z^n p\left(\frac{1}{z}\right) \) and having the zeros either in the left half plane or in the right half plane while O'hara and Rodriguez [60] considered the class of polynomials satisfying \(p(z) = z^n p\left(\frac{1}{z}\right) \). In the first chapter we consider the class of polynomials satisfying \(p(z) = z^n p\left(\frac{1}{z}\right) \) and prove a result of Govil, Jain and Labelle [33] without the condition that \(p(z) \) has all its zeros in one half plane. Our result is best possible and generalizes the result due to Govil, Jain and Labelle [33]. Also we obtain \(L^2 \) inequalities for the \(s \)th derivative of the classes of polynomials having no zero in \(|z| < K, K \leq 1\) and for polynomials having no zero in \(|z| < K, K \geq 1\). These results generalize some well known results. The inequality for the case \(K \leq 1 \), is best possible. For the class of polynomials having no zeros in \(|z| < K, K \leq 1\) we as well obtain inequality analogous to (2). Besides some other results for these classes and other related classes have also been obtained.

A classical result of Cauchy on the location of the zeros of the polynomial \(p(z) = z^n + \sum_{v=0}^{n-1} a_v z^v \) states that all the zeros are in the circle \(|z| \leq 1+A\) where

\[
A = \max_{0 \leq j < n} |a_j|.
\]

Joyal, Labelle and Rahman [42] and
Brham Datt and Govil [18] improved the above mentioned result of Cauchy. Further various generalizations of Eneström-Kakeya Theorem have been obtained, among others by Cargo and Shisha [3a], Joyal, Labelle and Rahman [42], P.V. Krishnaiah [46], Rubinstein [75], Govil and Rahman [34] and Govil and Jain [32]. In the second chapter we obtain an improvement of the result of Joyal, Labelle and Rahman [42] and Brham Datt and Govil [18] dealing with Cauchy's theorem by obtaining the zero free region bigger than the zero free region obtained by them. We also sharpen the result proved by Joyal, Labelle and Rahman [42] and Govil and Jain [32] concerning Eneström-Kakeya theorem by obtaining a smaller region. Besides these, various other results concerning the location of zeros of polynomials have been obtained.

Let \(p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \) be a polynomial of degree \(n \).

If \(M = \max_{|z|=1} |p(z)| \), then, by Cauchy's inequality, we have

\[
|a_{\nu}| \leq M, \quad 0 \leq \nu \leq n. \tag{5}
\]

Also, by a very simple method C. Visser [86] proved that

\[
|a_{0}| + |a_{n}| \leq M \tag{6}
\]

Rahman [66] gave the estimate for the sum of the moduli of any two coefficients of a polynomial \(p(z) \) in terms of \(M = \max_{|z|=1} |p(z)| \) and proved that for \(0 \leq u < v \leq n \)

O'hara and Rodriguez \cite{6o} considered the class of polynomials having all its zeros on the unit circle. The class of polynomials \(p(z) = \sum_{v=0}^{n} a_v z^v \) having a zero on \(|z| = \rho\), \((0 < \rho < \infty)\) was studied by Rahman and Schmeisser \cite{70} and they obtained a sharp upper bound for \(|a_0|\) in terms of \(\max_{|z|=1} |p(z)|\). In the third chapter we consider the class of polynomials having a prescribed zero on \(|z| = 1\) and obtain an inequality analogous to (5). We also obtain inequalities analogous to (7) for the class of polynomials having all its zeros on \(|z| = 1\) and for the class of polynomials whose zeros lie on or exterior (interior) to \(|z| = 1\). Besides these, some other related results have also been obtained.

\[|a_u| + |a_v| \leq \frac{4M}{\pi} \] (7)
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>i</td>
</tr>
<tr>
<td>ON SOME INEQUALITIES FOR POLYNOMIALS</td>
<td>1</td>
</tr>
<tr>
<td>ON LOCATION OF ZEROS OF POLYNOMIALS</td>
<td>44</td>
</tr>
<tr>
<td>COEFFICIENT ESTIMATES FOR POLYNOMIALS WITH RESTRICTED ZEROS</td>
<td>86</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>101</td>
</tr>
</tbody>
</table>