DYNAMIC ANALYSIS OF HIGHWAY BRIDGES
UNDER MOVING VEHICLES

By
PRABIR KUMAR CHATTERJEE

Thesis submitted
in fulfilment of the requirements for
the award of the degree of
DOCTOR OF PHILOSOPHY

Department of Civil Engineering
INDIAN INSTITUTE OF TECHNOLOGY, DELHI
INDIA
August 1992
DEDICATED TO

MY RESPECTED TEACHERS
CERTIFICATE

This is to certify that the thesis entitled, "Dynamic Behaviour of Highway Bridges under Moving Vehicles", being submitted by Mr. P. K. Chatterjee, to the Indian Institute of Technology, Delhi, for the award of the degree of 'Doctor of Philosophy' in Civil Engineering is a record of the bonafide research work carried out by him under our supervision and guidance. He has fulfilled the requirements for submission of this thesis, which to the best of our knowledge, has reached the requisite standard.

The material contained in this thesis has not been submitted in part or full to any other University or Institute for the award of any degree or diploma.

(Prof. T. K. Datta) (Prof. C. S. Surana)
I. I. T., Delhi I. I. T., Delhi
New Delhi - 110 016 New Delhi - 110 016
INDIA INDIA

August, 1992.
ACKNOWLEDGEMENTS

I am greatly in debt to my research supervisors, Professor T. K. Datta and Professor C. S. Surana for their constant help, advice and encouragement throughout this study.

It gives me immense pleasure to express my sincerest gratitude to Professor T. K. Datta without whose interest this work would not have been completed. His friendly attitude and untiring motivation inspired me a lot. Working with him was an invaluable experience in my life.

I am also thankful to Dr. A. K. Jain, Associate Professor of the Civil Engineering department for his help and advice.

Finally, I express my sincere thanks to my friends for their co-operation and help during this work.

PRABIR KUMAR CHATTERJEE

I.I.T., Delhi
August, 1992.
A continuum approach is presented for the dynamic analysis of different types of bridges for the vehicular movement. The types of bridges include truss bridge, cantilever bridge, arch bridge, multispan slab-and-girder bridge, cable-stayed bridge and suspension bridge. The formulation is first presented for a single moving load for which the dynamic response at any given point of time is obtained in terms of few recursive closed form expressions in each mode of vibration. The results of this analysis is then utilized for obtaining the response for single or multiaxle moving load idealized as a single, two-dimensional and three-dimensional sprung mass system. Mode shapes and frequencies of the continuum are extracted from eigen value problem which is determined from the dynamic stiffness of the system under various kinds of support and boundary condition consistent with the type of the bridge. In order to make the solution procedure applicable to different types of bridges, each type of bridge is suitably idealized.

The analysis considers the vehicle-pavement interactive force idealized as both linear and nonlinear (of hysteretic type), the effects of torsional coupling and random irregularity of the deck surface. The random bridge profiles are synthetically generated from specified power spectral density function of the pavement profile. The response of the bridge is obtained in time domain utilizing an iterative procedure to account for the nonlinear interactive force. For the dynamic response of cable-
stayed and suspension bridges warping effect of the deck, the
effects of tower flexibility and different boundary conditions of
the stiffening girder are duly considered in the analysis. For
the cable-stayed bridge, the effect of axial force on bending and
torsional deformation of the bridge deck (produced due to cable
tension) is included in the dynamic formulation of the problem.

The results of the continuum method is verified with the
reported results, and for certain cases, with the widely used
lumped mass analysis. With the help of the proposed solution,
parametric studies are conducted for different types of bridges
mentioned above under vehicular movements. Some of the important
results of the study are given in the following.

Continuum solution predicts the dynamic response of truss
and arch bridges fairly well. The sprung mass model of vehicle
provides less dynamic amplification factor (DAF) than that given
by constant force idealization of the vehicle. If the
nonlinearity of the interaction force for the sprung mass model
is considered in the analysis, the DAF is further reduced. Also,
3-D model of vehicle predicts less value of DAF compared to 2-D
and 1-D models for higher frequency ratio. Irregularity of the
bridge pavement significantly enhances the DAF. For smooth bridge
pavement, sprung and unsprung mass models of the vehicle
generally provide same responses. For torsionally stiff bridges,
like continuous beam-and-slab bridge, the eccentricity of
vehicle path does not significantly influence the DAF, while for
cable-stayed and suspension bridges it is not so. For lower speed
of the vehicle, the eccentricity of the vehicle path may reduce
the DAF compared to the symmetrically placed vehicle for suspension bridge. The effect of torsional coupling is found to be important for bridges which are torsionally less stiff. The DAF is significantly influenced by the speed parameter and the frequency ratio for all types of bridges. The effects of tower flexibility (for cable-stayed bridge) and boundary conditions of stiffening girder (for suspension bridge) on the bridge frequencies are considerable.
CONTENTS

CERTIFICATE ... i
ACKNOWLEDGEMENTS .. ii
ABSTRACT .. iii
CONTENTS .. vi
LIST OF TABLES .. xi
LIST OF FIGURES .. xiii
NOMENCLATURE .. xvii

CHAPTER - I INTRODUCTION

1.1 General ... 1
1.2 Need for the present work 7
1.3 Scope and objectives of the study 8
1.4 Organization of the thesis 9
FIGURE .. 13

CHAPTER - II REVIEW OF LITERATURE

2.1 Introductory remark 14
2.2 Modelling of vehicle 14
2.3 Description of deck surface roughness 19
2.4 Modelling of bridge and computation of its free vibrational characteristics 23
2.5 Vibration analysis for bridges 28
2.6 Parametric behaviour of different types of bridges 34
2.7 Experimental studies 42
FIGURES ... 46
<table>
<thead>
<tr>
<th>CHAPTER - III</th>
<th>FORMULATION OF CONTINUUM APPROACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Assumptions</td>
</tr>
<tr>
<td>3.3</td>
<td>Theory</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Continuum approach</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Calculation of dynamic response</td>
</tr>
<tr>
<td></td>
<td>due to a single moving load</td>
</tr>
<tr>
<td>3.4</td>
<td>Application of the method to truss</td>
</tr>
<tr>
<td></td>
<td>bridges</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Stiffness method of analysis</td>
</tr>
<tr>
<td></td>
<td>with lumped masses</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Application of the continuum</td>
</tr>
<tr>
<td></td>
<td>method</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Parametric studies</td>
</tr>
<tr>
<td>3.5</td>
<td>Application to arch bridges</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Numerical examples</td>
</tr>
<tr>
<td>3.6</td>
<td>Application to cantilever bridges</td>
</tr>
<tr>
<td>3.7</td>
<td>Conclusions</td>
</tr>
<tr>
<td>TABLES</td>
<td></td>
</tr>
<tr>
<td>FIGURES</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER - IV</th>
<th>VIBRATION OF CONTINUOUS BRIDGES UNDER MOVING VEHICLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Assumptions</td>
</tr>
<tr>
<td>4.3</td>
<td>Continuum approach for bridge deck analysis</td>
</tr>
<tr>
<td>4.4</td>
<td>Modelling of vehicle</td>
</tr>
<tr>
<td>4.5</td>
<td>Response of the bridge</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Combined (flexural-torsional) response for (single)</td>
</tr>
<tr>
<td></td>
<td>unsprung mass system</td>
</tr>
</tbody>
</table>
CHAPTER - V VIBRATION OF CABLE-STAYED BRIDGES

5.1 Introduction 128
5.2 Assumptions 130
 5.3.1 Vertical stiffness of bridge due to cables 131
 5.3.2 Torsional stiffness of bridge due to cables 133
5.4 Continuum approach for bridge deck analysis 135
5.5 Numerical examples and parametric studies 139
5.6 Conclusions 146
TABLES
FIGURES

CHAPTER - VI VIBRATION OF SUSPENSION BRIDGES

6.1 Introduction 165
6.2 Assumptions 166
6.3 Governing equations of motion 168
6.4 Vertical mode of vibration 171
6.5 Torsional mode of vibration 176
6.6 Dynamic response of the bridge due to vehicular movement 182
6.7 Numerical example 182
6.8 Parametric studies 183
6.9 Conclusions 191

TABLES 193
FIGURES 202

CHAPTER - VII CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
6.1 Conclusions 215
6.2 Recommendations for future work 219

APPENDIX - 1 FORMULATION OF DYNAMIC STIFFNESS MATRIX, \([K]_r \) AND INTEGRATION CONSTANT MATRIX, \([R]_r \)
A1.1 Flexural dynamic stiffness matrix 221
A1.2 Torsional dynamic stiffness matrix 223

APPENDIX - 2 CLOSED FORM SOLUTION FOR BRIDGE RESPONSE 224

APPENDIX - 3 FORMULAS FOR DEFLECTION AND TORSIONAL ROTATION OF CANTILEVER BEAM
FIGURE 227

APPENDIX - 4 EXPRESSIONS FOR \([K]_r \) AND \([R]_r \) FOR BEAM SEGMENT WITH CONSTANT AXIAL FORCE 228

APPENDIX - 5 DERIVATION OF \([a] \) MATRIX
A5.1 \([a] \) matrix for vehicle idealized as a 2-D system 229
A5.2 \([a] \) matrix for vehicle idealized as a 3-D system 232
FIGURES 235