DEWETTING IN THIN LIQUID FILMS OF THICKNESS DEPENDENT VISCOSITY

TIRUMALA RAO KOTNI

DEPARTMENT OF CHEMICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY DELHI

OCTOBER 2016
DEWETTING IN THIN LIQUID FILMS OF THICKNESS DEPENDENT VISCOSITY

by

TIRUMALA RAO KOTNI
Department of Chemical Engineering

Submitted
in fulfillment of the requirements of the degree of Doctor of Philosophy

to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI
OCTOBER 2016
Certificate

This is to certify that the thesis titled "DEWETTING IN THIN LIQUID FILMS OF THICKNESS DEPENDENT VISCOSITY" being submitted by Mr. Tirumala Rao Kotni in the Department of Chemical Engineering, Indian Institute of Technology, Delhi, for the award of the degree of Doctor of Philosophy, is a record of bona-fide research work carried out by him under my guidance and supervision. In my opinion, the thesis has reached the standards fulfilling the requirements of the regulations relating to the degree. The results contained in this thesis have not been submitted for the award of any other degree, associateship or similar title of any university or institution.

Dr. Jayati Sarkar
Assistant Professor
Department of Chemical Engineering
Indian Institute of Technology Delhi
Acknowledgments

I wish to take this opportunity to thank all the people who made this dissertation possible and because of whom this study a valuable experience that I will cherish for ever.

First of all, this appreciation is reserved for my supervisor, Dr. Jayati Sarkar. I am truly indebted to her for great motivation, encouragement and moral support at every moment of my research duration. I feel very fortunate that I got an opportunity to work under her. She has given me the way to grow as a researcher and scientist along with my academics profession. What I have learned during my study under her guidance is far more than this thesis itself, which I believe will be beneficial to me in a long way. Almost in all the tough situations that I faced in my academic life, professional life as well as my personal life, I got incredible support from her.

I am also indebted to Prof. Rajesh Khanna for his kind suggestions, guidance and motivation during the course of my research work. I am also thankful to him for commenting on my views and helping me understand and enrich my ideas.

Now, I would like to express my gratitude to my research committee members, Prof. Rajesh Khanna, Prof. Ashok N. Bhaskarwar and Dr. Subhra Datta for their insightful comments and constructive criticism at different stages were thought-provoking and they helped me focus my ideas.

I would like to thank my friends Satish Raja, Dheerendra, Hemalatha, Murali, Siva Reddy, Chaitanya Narayana, Muthukumar, Aranganathan Neelamegam, Appa Rao, Bharadwaj, Ramsagar, Arabinda Baruah, Pravakar Mohanty, Jay Pandey, Vedpal Arya and all other friends for their support and motivation.
I would like to express my gratitude to my teachers of IIT Delhi for their motivation and for giving me a wonderful learning experience and facilities during this period.

I would like to thank my parents, brother, sisters and brother in laws for their blessings, love and support.

New Delhi

Tirumala Rao Kotni
Abstract

Spontaneous dewetting of supported thin liquid films of thickness dependent viscosity was studied based on numerical simulations of the thin film equation in 2-D as well as 3-D. Numerical simulations reveal the emergence of sub spinodal lengthscales without need of heterogeneous substrate/nucleated dewetting. It has been recently observed in the experiments that the liquid viscosity can either increase or decrease with film thickness due to entanglement, molecular weight, molecular mobility and monomer monomer interactions. The liquid viscosity decreases with decrease in film thickness has been seen in polystyrene (PS) films and in contrast, the liquid viscosity increases with decrease in film thickness in polyethylene glycol (PEG) films. Instabilities in such thin liquid films was studied based on numerical simulations of thin film equation in 2-d as well as 3-d with two excess intermolecular forces.

In the first scenario, liquid viscosity decreases with decrease in film thickness and force filed to be Lifshitz Van der Waals attraction and Born repulsion have been considered. Numerical simulation of such unstable thin liquid films on a homogeneous substrate reveal the emergence of sub spinodal lengthscales through formation of satellite holes during dewetting. These satellite holes appears between already growing primary holes without invoking the need of heterogeneous substrate or nucleation if mobility of the liquid film increases non monotonically with film thickness. It was also found that sub spinodal lengthscales was possible for certain range of mean film thicknesses lies between the maximum mobility and the mobility at the radius of gyration. Kinetics of dewetting highlights the existence of distinct regions which are responsible for spinodal and sub spinodal dewetting. These regions are established
based on the exponents obtained between the maximum growth rate versus mean film thickness and linear time of rupture versus mean film thickness. Kinetics of dewetting is characterized by the maximum growth rate, time of rupture in pre-rupture phase and growth of radius of the hole and their exponents in post rupture phase. Exponent in sub spinodal regions exhibits different rather than outside of it. Sequential exponent of $2/3 \rightarrow 1/4 \rightarrow 1/2$ during the hole growth phase indicate the formation of satellite holes rather than rises upto form a intervening droplet ($2/3 \rightarrow 1/4 \rightarrow 4/5$).

On the other hand the liquid viscosity increases with decrease in film thickness and this system subjected to Lifshitz Van der Waals force only. In this case substrate is coated by coating of a uniform thickness (which is in nanometer thickness). Influence of antagonistic forces on thin films lead to formation of two phases namely, thinner flat film phase and thicker high curvature phase. The formation and growth of these phases were investigated based on the dynamic tracking of number of droplets or defects and the total free energy during the spinodal phase separation. Morphological phase separation was described by the three stages *viz.* early, intermediate and late stages of phase separations. Emergence of sub spinodal length scales in the intermediate stage via subspinodal phase separation through formation of satellite droplet/thicker high curvature droplet. These satellite droplets are forming between growing primary droplets during phase separation if the mobility of the liquid in thinner portions are very low. Decay of number density drops in the intermediate stage as well as late stages exhibit different exponents. These exponents are responsible for different coarsening events and mobility of the film. But early stage does not effect and exhibits an exponent of $-1/4$. Exponents of $-1/7, -1/4, -1/5, -1/3, -2/5$ in the intermediate stage and $-2/5, -1/3$ in the late stage of phase separation were found. Spinodal phase separation also highlights the bimodal and multi modal distribution of maximum height in the defects.
Contents

1 Introduction 1

1.1 Spinodal dewetting in thin liquid films 6
1.2 Spinodal phase separation in thin liquid films 9
1.3 Literature Review 11
1.4 Organization of thesis 15

2 Theory and Numerics 17

2.1 General systems of study 17
2.2 Mathematical modeling 19
2.3 Longwave approximation 20
2.4 Viscosity as a function of film thickness 23
 2.4.1 Viscosity decreases with decrease in film thickness 23
 2.4.2 Viscosity increases with decrease in film thickness 24
2.5 Excess Intermolecular forces 25
2.6 Linear stability analysis 28
2.7 Nondimensionalization 30
2.8 Numerical Scheme and boundary conditions 32

3 Sub spinodal spontaneous dewetting 35

3.1 Spontaneous dewetting in thin films of constant viscosity 35
3.2 Mobility in thin liquid films of thickness dependent viscosity 39
3.3 Grid density 41
3.4 Pre-rupture phase for thickness dependent viscosity 43
3.5 Post rupture phase for thickness dependent viscosity 52
3.6 Parametric Study 60
3.7 Conclusion 65

4 Kinetics of sub spinodal dewetting 67
4.1 Shape of mobility for thickness dependent viscosity 67
4.2 Kinetics in pre-rupture phase 68
4.3 Kinetics of post rupture phase 78
4.4 Conclusion 83

5 Sub spinodal morphological Phase separation 85
5.1 Different stages of Spinodal Phase Separation 86
5.2 Mobility in thin liquid films of viscosity increases with decrease in film thickness 92
5.3 MPS for thickness dependent viscosity 94
5.4 MPS for thickness dependent viscosity in 3-D films undergoing satellite defect formation 96
5.5 Coarsening events in thickness dependent viscosity 99
5.6 Effect of viscosity ratio, M_2 104
5.7 Effect of radius of gyration, b 109
5.8 Effect of mean film thickness, h_0 113
5.9 Fraction distribution 116
5.10 Parametric study 122
5.11 Conclusion 124

6 Conclusions 125
List of Figures

1.1 Variation of force with film thickness for Type I films. Positive value refers to attraction and negative value refers to repulsion. 3

1.2 Variation of force with film thickness for Type II films. Positive values refer to attraction and negative values refer to repulsion. 4

1.3 Variation of force with film thickness for Type III films. Positive values refer to attraction and negative values refer to repulsion. 4

1.4 Variation of force with film thickness for Type IV films. Positive values refer to attraction and negative values refer to repulsion. 5

1.5 Morphological evolutions from random perturbation in a domain of $4\lambda_m$ for a constant viscosity. Mean film thickness, $h_0 = 2$ nm. Profiles from 1-5 corresponding to non dimensional time (T) 0, 23.0, 26.27, 28.07 and 28.75 respectively. 7

1.6 Variation of maximum thickness and minimum thickness with time for a constant viscosity. Mean film thickness, $h_0 = 2$ nm. 7

1.7 Variation of surface roughness with time for a constant viscosity. Mean film thickness, $h_0 = 2$ nm. 8

1.8 Morphological evolutions from half wave cosine in post rupture phase for a film of thickness 2 nm in a unit cell of size $\lambda_m/2$ for constant viscosity. Profiles from 1–10 represent increasing times. 8
1.9 Morphological Phase Separation in thin liquid films of constant viscosity films. Domain size is $2\lambda_m$. Parameters are $R = -0.1$ and $D = 0.2$, film thickness, $h_0 = 3$ nm. Increasing numbers indicate increase in value of time

2.1 Schematic diagram of thin liquid film supported by solid substrate. μ_1, μ_2 denoted as viscosity of the liquid film.

2.2 Schematic diagram of thin liquid film supported by thin coated substrate. μ_1, μ_2 denoted as viscosity of the liquid film.

2.3 Variation of viscosity μ^I with film thickness h. Parameter values (M_1, r_g, p) for different curves are 2 ($10^2, 6.0$ nm, 6.8), 3 ($10^4, 6.0$ nm, 6.8), 4 ($10^6, 6.0$ nm, 6.8), 5 ($10^6, 4.0$ nm, 6.8), 6 ($10^6, 10$ nm, 6.8), 7 ($10^6, 6.0$ nm, 4.0), 8 ($10^6, 6.0$ nm, 8.0), Curve 1 corresponds to constant viscosity ($M_1 = 1$) case.

2.4 Variation of viscosity μ^{II} with film thickness h. Parameter values (M_2, b) for different curves are 2 ($5.0, 2.0$ nm$^{-1}$), 3 ($10^2, 2.0$ nm$^{-1}$), 4 ($10^4, 2.0$ nm$^{-1}$), 5 ($10^6, 2.0$ nm$^{-1}$), 6 ($10^6, 4.0$ nm$^{-1}$), 7 ($10^6, 6.0$ nm$^{-1}$) and 8 ($10^6, 8.0$ nm$^{-1}$) respectively. Curve 1 corresponds to constant viscosity ($M_2 = 1$) case.

2.5 Variation of excess free energy per unit area, ΔG (solid line) and excess force per unit volume, ϕ_h, (dashed line) with film thickness (h) for LWBR film.

2.6 Variation of excess free energy per unit area, ΔG (solid line) and excess force per unit volume, ϕ_h, (dashed line) with film thickness (h) for LWC film. Equilibrium flat film thickness, h_m and critical thickness, h_c. Parameters $S^{LW} = -15mJ/m^2$, $\delta = 0.6$ nm, $d_0 = 0.158$ nm and $R = -0.1$.

x
3.1 Morphological evolutions from half wave cosine in pre rupture phase for a mean film thickness 2 nm in a domain of size $\lambda_m/2$ with constant viscosity. Profiles from 1–6 represent increasing times. 36

3.2 Evolution of maximum and minimum film thickness with time in pre rupture phase for a mean film thickness 2 nm with constant viscosity. 37

3.3 Evolution of surface roughness with time in pre rupture phase for a film of thickness 2 nm with constant viscosity. 37

3.4 Morphological evolutions from half wave cosine in post rupture phase for a mean film thickness 2 nm in a domain of size $\lambda_m/2$ with constant viscosity. Profiles from 1–10 represent increasing times. 38

3.5 Variation of mobility, m with film thickness, h having different values of M_1. Parameter value M_1 for different curves B, C and D are 10^2, 10^4 and 10^6. Curve A corresponds to constant viscosity ($M_1 = 1$) case. $r_g = 6$ nm and $p = 6.8$. Locations of the maximum mobility, $h_{m_1} = 0.7$ nm, $h_{m_2} = 1.75$ nm and $h_{m_3} = 3.0$ nm. Location of the local minimum mobility, $g_m = 6.0$ nm. Circles on each curve corresponds to film thickness 0.7 nm, 3.5 nm and 8.5. 39

3.6 Variation of mobility, m with film thickness, h having different values (r_g, p) for different curves are E (4 nm, 6.8), F (8 nm, 6.8), G (6 nm, 4.0) and H (6 nm, 8.0). $M_1 = 10^6$ nm. (h_{m_4}, g_{m_4}) \sim (0.3 nm 6.0 nm), (h_{m_5}, g_{m_5}) \sim (0.6 nm 4.0 nm), (h_{m_6}, g_{m_6}) \sim (1.1 nm 6.0 nm), (h_{m_7}, g_{m_7}) \sim (1.1 nm 8.0 nm). Circles on each curve corresponds to film thickness 3.0 nm and 8.5 nm. 40

3.7 Evolution of maximum and minimum film thickness with time in pre rupture phase for a mean film thickness, $h_0 = 1.0$ nm and domain size of λ_m. Curves represent the number of grid points, n varying from 96 to 240. (A) Constant viscosity. (B) Thickness dependent viscosity ($M_1 = 10^2$, $p = 6.0$, $r_g = 6.0$ nm). 42
3.8 Evolution of surface roughness with time in pre rupture phase for a mean film thickness $h_0 = 1.0$ nm and domain size of λ_m. Curves represent the number of grid points, n varying from 96 to 240. (A) Constant viscosity. (B) Thickness dependent viscosity ($M_1 = 10^2$, $p = 6.0$, $r_g = 6.0$ nm). .. 42

3.9 Morphological evolutions from cosine perturbation in a domain of $\lambda_m/2$ for thickness dependant viscosity. Mean film thickness, $h_0 = 2$ nm. Parameter values of $M_1 = 10^2$, $r_g = 6.0$ nm and $p = 6.8$. Profiles from 1-5 corresponding to renormalized time (T_{rn}x10$^{-2}$) 0, 25.12, 26.98, 27.95 and 28.17 respectively. .. 43

3.10 Morphological evolutions from cosine perturbation in a domain of λ_m for thickness dependant viscosity. Mean film thickness, $h_0 = 2$ nm. Parameter values of $M_1 = 10^6$, $r_g = 6$ nm and $p = 6.8$. Profiles from 1-5 corresponding to renormalized time (T_{rn}x10$^{-2}$) 0, 1.327, 1.415, 1.439 and 1.440 respectively. 44

3.11 Surface morphology at rupture for a film of thickness 2 nm in domain of size λ_m having different viscosity ratio M_1. Arrow indicates increasing value of M_1 (1, 102, 103, 104 and 106). $r_g = 6$ nm and $p = 6.8$. 45

3.12 Evolution of minimum and maximum thickness with stage coordinates for a film of thickness 2 nm in a domain of size λ_m having different viscosity ratio M_1. Arrow indicates increasing value of M_1 (1, 102, 103, 104 and 106). $r_g = 6$ nm and $p = 6.8$. 45

3.13 Evolution of surface roughness with stage coordinates for a film of thickness 2 nm in a domain of size λ_m having different viscosity ratio M_1. Arrow indicates increasing value of M_1 (1, 102, 103, 104 and 106). $r_g = 6$ nm and $p = 6.8$. 46
3.14 Surface morphology at rupture for a mean film thickness 5 nm in domain of size λ_m having different radius of gyration r_g. Arrow indicates increasing value of r_g (2 nm, 4 nm, 6 nm, and 8 nm). $p = 6.8$ nm and $M_1 = 10^6$. 47

3.15 Evolution of minimum and maximum thickness with stage coordinates for a film of thickness 5 nm in a domain of size λ_m having different radius of gyration r_g. Arrow indicates increasing value of r_g (2 nm, 4 nm, 6 nm, and 8 nm). $p = 6.8$ nm and $M_1 = 10^6$. 47

3.16 Evolution of surface roughness with stage coordinates for a film of thickness 5 nm in a domain of size λ_m having different radius of gyration r_g. Arrow indicates increasing value of r_g (2 nm, 4 nm, 6 nm, and 8 nm). $p = 6.8$ nm and $M_1 = 10^6$. 48

3.17 Surface morphology at rupture for a film of thickness 5 nm in domain of size λ_m having different exponent p. Arrow indicates increasing value of p (2, 4, 6, and 8). $r_g = 6$ nm and $M_1 = 10^6$. 48

3.18 Evolution of minimum and maximum thickness with stage coordinates for a film of thickness 5 nm in a domain of size λ_m having different exponent p. Arrow indicates increasing value of p (2, 4, 6, and 8). $r_g = 6$ nm and $M_1 = 10^6$. 49

3.19 Evolution of surface roughness with stage coordinates for a film of thickness 5 nm in a domain of size λ_m having different exponent p. Arrow indicates increasing value of p (2, 4, 6, and 8). $r_g = 6$ nm and $M_1 = 10^6$. 49

3.20 Morphological evolutions from random perturbation in a domain of $4\lambda_m$ for thickness dependant viscosity. Mean film thickness, $h_0 = 2$ nm. Parameter values of $M_1 = 10^2$, $r_g = 6.0$ nm and $p = 6.8$. Profiles from 1-5 corresponding to renormalized time $(T_r n x 10^{-2}) 0, 23.75, 27.11, 28.95$ and 29.67 respectively. 50
3.21 Morphological evolutions from random perturbation in a domain of $4\lambda_m$ for thickness dependant viscosity. Mean film thickness, $h_0 = 2$ nm. Parameter values of $M_1 = 10^6$, $r_g = 6$ nm and $p = 6.8$. Profiles from 1-5 corresponding to renormalized time $(T_{rn} \times 10^{-2})$ 0, 0.781, 0.876, 0.925 and 0.939 respectively. 51

3.22 3D grey scale patterns of surface morphologies at rupture for a 2 nm film in a unit cell of size λ_m. (A) Low value of viscosity ratio $M_1 = 5.0$ and (B) High value of viscosity ratio $M_1 = 10^6$ respectively. $r_g = 6$ nm and $p = 6.8$. 51

3.23 Morphological evolutions from half wave cosine in post rupture phase for a film of thickness 2 nm in a domain of size λ_m with viscosity ratio $M_1 = 10^2$. Profiles from 1–6 represent increasing times. $r_g = 6$ nm and $p = 6.8$. 52

3.24 Morphological evolutions from half wave cosine in post rupture phase for a film of thickness 2 nm in a domain of size λ_m with viscosity ratio $M_1 = 10^6$. Profiles from 1–6 represent increasing times. $r_g = 6$ nm and $p = 6.8$. 53

3.25 3D grey scale pictures of morphological evolutions for a 2nm film in a unit cell of size λ_m and viscosity ratio $M_1 = 10^6$ undergoing satellite hole formation. Pictures A, B, C and D correspond to increasing times. $r_g = 6nm$ and $p = 6.8$. 55

3.26 Morphological evolutions for a film of thickness 2 nm in a domain of size $2\lambda_m$ with viscosity ratio $M_1 = 10^2$. Increasing numbers represent increasing times. $r_g = 6$ nm and $p = 6.8$. 56

3.27 Morphological evolutions for a film of thickness 2 nm in a domain of size $2\lambda_m$ with viscosity ratio $M_1 = 10^6$. Increasing numbers represent increasing times. $r_g = 6$ nm and $p = 6.8$. 57

3.28 Spinodal holes during dewetting for a film of thickness 2 nm in a domain of size $6\lambda_m$ with viscosity ratio $M_1 = 10^2$. $r_g = 6$ nm and $p = 6.8$. 58
3.29 Spinodal and nucleated holes during dewetting for a film of thickness 2 nm in a domain of size $6\lambda_m$ with viscosity ratio $M_1 = 10^6$, $r_g = 6$ nm and $p = 6.8$. 58

3.30 World lines of holes during dewetting of a film lying in spinodal regime in a domain of size $8\lambda_m$. Film thickness 2 nm, $M_1 = 10^2$, $r_g = 6$ nm and $p = 6.8$. 59

3.31 World lines of primary holes (solid lines) and satellite holes (dashed lines) during dewetting of a film lying in subspinodal regime in a domain size of $8\lambda_m$. Film thickness 2 nm, $M_1 = 10^6$, $r_g = 6$ nm and $p = 6.8$. 59

3.32 Variation of lengthscales with mean film thickness in films of thickness dependent viscosity in a domain size of $8\lambda_m$. Parameter values of M_1 for different Curves 1, 2 and 3 are 1.0, 10^4 and 10^6. $r_g = 6$ nm and $p = 6.8$. 60

3.33 Reduced lengthscales for a film of thickness 2 nm simulated in a domain of size $\lambda_m/2$ for different parametric values of M_1, r_g and p. 61

3.34 Reduced lengthscales for a film of thickness 4 nm simulated in a domain of size $\lambda_m/2$ for different parametric values of M_1, r_g and p. 62

3.35 Reduced lengthscales for a film of thickness 6 nm simulated in a domain of size $\lambda_m/2$ for different parametric values of M_1, r_g and p. 63

3.36 Variation of location of the maximum mobility, h_m with r_g for different values of M_1 and p. Lines 1-5 correspond to (M_1, p) values of $(10^2, 6.8)$, $(10^4, 6.8)$, $(10^6, 6.8)$, $(10^6, 10)$ and $(10^6, 16)$ respectively. 64

4.1 Variation of growth rate of instability (ω) with wave number (k) for constant viscosity films. Long dash lines indicates location of maximum growth rate (ω_m) and maximum wave number (k_m). Neutral wave number k_n indicated. 69

4.2 Variation of maximum growth rate (ω_m) with mean film thickness for constant viscosity films. Dotted line indicates slope. 69

xv
4.3 Variation of dominant wave length (λ_m) with mean film thickness for constant viscosity films. Dotted line indicates slope.
4.4 Variation of time of rupture (t_r) with mean film thickness for constant viscosity films. Dotted line indicates slope.
4.5 Variation of maximum growth rate (ω_m) with mean film thickness. Parameter value M_1 for different curves 1, 2 and 3 are 10^2, 10^4 and 10^6 respectively. Dotted lines indicate slopes. $r_g = 6$ nm, $p = 6.8$.
4.6 Variation of maximum growth rate (ω_m) with mean film thickness. Arrow indicates increasing values of r_g (4 nm, 6 nm, 8 nm). Dotted lines indicate slopes. $M_1 = 10^6$ nm, $p = 6.8$.
4.7 Variation of maximum growth rate (ω_m) with mean film thickness. Arrow indicates increasing values of p (4.0, 6.8, 8.0). Dotted lines indicate slopes. $M_1 = 10^6$ nm, $r_g = 6.0$ nm.
4.8 Variation of linear time of rupture (t_{lr}) with mean film thickness. Parameter value M_1 for different curves 1, 2 and 3 are 10^2, 10^4 and 10^6 respectively. Dotted lines indicate slopes. $r_g = 6$ nm, $p = 6.8$.
4.9 Variation of linear time of rupture (t_{lr}) with mean film thickness. Arrow indicates increasing values of r_g (4 nm, 6 nm, 8 nm). Dotted lines indicate slopes. $M_1 = 10^6$ nm, $p = 6.8$.
4.10 Variation of time of rupture (t_{lr}) with mean film thickness. Arrow indicates increasing values of p (4.0, 6.8, 8.0). Dotted lines indicate slopes. $M_1 = 10^6$ nm, $r_g = 6.0$ nm.
4.11 Variation of ratio of time of rupture (T_{nr}/T_{lr}) with mean film thickness. Parameter value M_1 for different curves 1, 2 and 3 are 10^2, 10^4 and 10^6 respectively. Curve 4 corresponds to constant viscosity ($M_1 = 1.0$) case. $r_g = 6$ nm, $p = 6.8$.
4.12 Variation of ratio of time of rupture (T_{nr}/T_{lr}) with mean film thickness. Parameter value r_g for different curves 1, 2 and 3 are 4 nm, 6 nm, 8 nm. $M_1 = 10^6$ nm, $p = 6.8$.

xvi
4.13 Variation of ratio of time of rupture (T_{nr}/T_{lr}) with mean film thickness. Parameter value p for different curves 1, 2 and 3 are 4.0, 6.8, 8.0. $M_1 = 10^6$ nm, $r_g = 6.0$ nm.

4.14 Variation of radius of primary hole (r_r) and with renormalized time (t_r) simulated in a unit cell of size $\lambda_m/2$ for constant viscosity case. Solid, dashed and dash-dot lines corresponds to ls ($h_0 = 0.7$ nm), ss ($h_0 = 3.5$ nm) and rs ($h_0 = 8.5$ nm) regions. Dotted lines are slopes and indicative of power law exponent (α).

4.15 Variation of radius of primary hole (r_r) and with renormalized time (t_r) simulated in a unit cell of size $\lambda_m/2$ for thickness dependent viscosity case. Solid, dashed and dash-dot lines corresponds to ls ($h_0 = 0.7$ nm), ss ($h_0 = 3.5$ nm) and rs ($h_0 = 8.5$ nm) regions. $M_1 = 10^2$ nm, $r_g = 6.0$ nm and $p = 6.8$. Dotted line are slopes and indicative of power law exponent (α).

4.16 Variation of radius of primary hole (r_r) and with renormalized time (t_r) simulated in a unit cell of size $\lambda_m/2$ for thickness dependent viscosity case. Solid, dashed and dash-dot lines corresponds to ls ($h_0 = 0.7$ nm), ss ($h_0 = 3.5$ nm) and rs ($h_0 = 8.5$ nm) regions. $M_1 = 10^6$ nm, $r_g = 6.0$ nm and $p = 6.8$. Dotted line are slopes and indicative of power law exponent (α).

4.17 Variation of renormalized radius of primary hole (r_r) and mobility at the rim thickness (m_r) with renormalized time simulated in a unit cell of size $\lambda_m/2$ for thickness dependent viscosity case. (A) Film thickness, $h_0 = 3.0$ nm corresponds to ss region. (B) Film thickness, $h_0 = 8.5$ nm corresponds to rs region. Parameter values $M_1 = 10^6$ nm, $r_g = 4.0$ nm and $p = 6.8$. Dotted line are slopes and indicative of power law exponent (α).
4.18 Variation of renormalized radius of primary hole \((r_m)\) and mobility at the rim thickness \((m_r)\) with renormalized time simulated in a unit cell of size \(\lambda_m/2\) for thickness dependent viscosity case. (A) Film thickness, \(h_0 = 3.0\) nm corresponds to \(ss\) region. (B) Film thickness, \(h_0 = 8.5\) nm corresponds to \(rs\) region. Parameter values \(M_1 = 10^6\) nm, \(r_g = 8.0\) nm and \(p = 6.8\). Dotted line are slopes and indicative of power law exponent \((\alpha)\). 82

4.19 Variation of renormalized radius of primary hole \((r_m)\) and mobility at the rim thickness \((m_r)\) with renormalized time simulated in a unit cell of size \(\lambda_m/2\) for thickness dependent viscosity case. (A) Film thickness, \(h_0 = 3.0\) nm corresponds to \(ss\) region. (B) Film thickness, \(h_0 = 8.5\) nm corresponds to \(rs\) region. Parameter values \(M_1 = 10^6\) nm, \(r_g = 6.0\) nm and \(p = 4.0\). Dotted line are slopes and indicative of power law exponent \((\alpha)\). 83

4.20 Variation of renormalized radius of primary hole \((r_m)\) and mobility at the rim thickness \((m_r)\) with renormalized time simulated in a unit cell of size \(\lambda_m/2\) for thickness dependent viscosity case. (A) Film thickness, \(h_0 = 3.0\) nm corresponds to \(ss\) region. (B) Film thickness, \(h_0 = 8.5\) nm corresponds to \(rs\) region. Parameter values \(M_1 = 10^6\) nm, \(r_g = 6.0\) nm and \(p = 8.0\). Dotted line are slopes and indicative of power law exponent \((\alpha)\). 84

5.1 Morphological Phase Separation in three different stages (early, intermediate and late stages) for constant viscosity films. Domain size is \(10\lambda_m\). Parameters are \(R = -0.1\) and \(D = 0.2\), film thickness, \(h_0 = 3\) nm. The dotted, solid and dashed lines are indicates increasing time scales. 87

5.2 Variation of number of defects with time in a domain of size \(256\lambda_m\) for a film of thickness, \(h = 3\) nm. Parameters are \(R = -0.1\), \(D = 0.2\). 88
5.3 (A) Variation of interfacial free energy (dotted line, F_i), excess free energy (dashed line, F_e) and total free energy (solid line, F_t) with time (T). (B) Magnified view of three energies in the early stage. Size of the domain $256\lambda_m$. Mean film of thickness, $h = 3$ nm. Parameters are $R = -0.1$, $D = 0.2$.

5.4 Variation of fractional flat area (f_d) and fractional completion of SPS (f_p) with non dimensional time (T) in a domain of size $256\lambda_m$. Cut-off thickness is 20% as described in the text. Mean film thickness, $h = 3$ nm. Parameters are $R = -0.1$, $D = 0.2$.

5.5 Variation of mobility, m with film thickness, h having different values of M_2. Parameter value M_2 for different curves 1, 2, 3 and 4 are 5.0, 10^2, 10^4 and 10^6. Curve 5 corresponds to constant viscosity ($M_2 = 1$) case. $b = 2$ nm$^{-1}$.

5.6 Variation of mobility, m with film thickness, h having different values of b. Parameter value b for different curves 1, 2, 3 and 4 are 2 nm$^{-1}$, 4 nm$^{-1}$, 6 nm$^{-1}$ and 8 nm$^{-1}$. $M_2 = 10^6$.

5.7 Morphological Phase Separation in three different stages (early, intermediate and late stages) for thin liquid films thickness dependent viscosity. Domain size is $10\lambda_m$. Parameters are $R = -0.1$ and $D = 0.2$, film thickness, $h = 3$ nm. $M_2 = 10^6$ and $b = 2$ nm$^{-1}$. The dotted, solid and dashed lines are indicates increasing time scales.

5.8 3D grey scale pictures of morphological phase separation for a 3 nm film in a unit cell of size λ_m and viscosity ratio $M_2 = 10^6$ undergoing satellite drop formation. $b = 2$ nm$^{-1}$, $R = -0.1$ and $D = 0.2$.

xix
5.9 3D Morphological evolutions during Spinodal Phase Separation in thin liquid films of thickness dependent viscosity for a mean film thickness, $h_0 = 3$ nm. Domain size is $4\lambda_m$. Parameters are $R = -0.1$ and $D = 0.2$, $M_2 = 10^6$ and $b = 2$ nm$^{-1}$. T is non dimensional time indicating at the top of each frame. Dark portions are thinner regions and light color portions are thicker regions.

5.10 SPS in the early stages for thin liquid films of thickness dependent viscosity. Domain size is $3\lambda_m$. Other parameters are $R = -0.1$ and $D = 0.2$, film thickness, $h_0 = 3$ nm. $M_2 = 10^2$ and $b = 2$ nm$^{-1}$. The dotted, solid and dashed lines refers to increasing times.

5.11 SPS in the intermediate stages for thin liquid films of thickness dependent viscosity. Domain size is $3\lambda_m$. Other parameters are $R = -0.1$ and $D = 0.2$, film thickness, $h_0 = 3$ nm. $M_2 = 10^2$ and $b = 2$ nm$^{-1}$. The dotted, solid and dashed lines refers to increasing times.

5.12 SPS in the late stages for thin liquid films of thickness dependent viscosity. Domain size is $3\lambda_m$. Other parameters are $R = -0.1$ and $D = 0.2$, film thickness, $h_0 = 3$ nm. $M_2 = 10^2$ and $b = 2$ nm$^{-1}$. The dotted, solid and dashed lines refers to increasing times.

5.13 SPS in the intermediate stages for thin liquid films of thickness dependent viscosity. Domain size is $3\lambda_m$. Other parameters are $R = -0.1$ and $D = 0.2$, film thickness, $h_0 = 3$ nm. $M_2 = 10^6$ and $b = 2$ nm$^{-1}$. The dotted, solid and dashed lines refers to increasing times.

5.14 SPS in the late stages for thin liquid films of thickness dependent viscosity. Domain size is $3\lambda_m$. Other parameters are $R = -0.1$ and $D = 0.2$, film thickness, $h_0 = 3$ nm. $M_2 = 10^6$ and $b = 2$ nm$^{-1}$. The dotted, solid and dashed lines refers to increasing times.
5.15 (A) Variation of number of defects \((n) \), interfacial free energy \((F_i) \), maximum and minimum thickness \((H_{\text{max}}, H_{\text{min}}) \), fractional flat area \((f_d) \), fractional completion of SPS with non dimensional time \((T) \) in a domain size of 256\(\lambda_m \). (B) Variation of excess free energy \((F_e) \) and total free energy \((F_t) \) with non dimensional time \((T) \). Mean film thickness, \(h_0 = 3 \text{ nm} \). Parameters are \(R = -0.1, D = 0.2. M_2 = 5 \) and \(b = 2 \text{ nm}^{-1} \). .. 105

5.16 (A) Variation of number of defects \((n) \), interfacial free energy \((F_i) \), maximum and minimum thickness \((H_{\text{max}}, H_{\text{min}}) \), fractional flat area \((f_d) \), fractional completion of SPS with non dimensional time \((T) \) in a domain size of 256\(\lambda_m \). (B) Variation of excess free energy \((F_e) \) and total free energy \((F_t) \) with non dimensional time \((T) \). Mean film thickness, \(h_0 = 3 \text{ nm} \). Parameters are \(R = -0.1, D = 0.2. M_2 = 10^2 \) and \(b = 2 \text{ nm}^{-1} \). .. 106

5.17 (A) Variation of number of defects \((n) \), interfacial free energy \((F_i) \), maximum and minimum thickness \((H_{\text{max}}, H_{\text{min}}) \), fractional flat area \((f_d) \), fractional completion of SPS with non dimensional time \((T) \) in a domain size of 256\(\lambda_m \). (B) Variation of excess free energy \((F_e) \) and total free energy \((F_t) \) with non dimensional time \((T) \). Mean film thickness, \(h_0 = 3 \text{ nm} \). Parameters are \(R = -0.1, D = 0.2. M_2 = 10^6 \) and \(b = 2 \text{ nm}^{-1} \). .. 107

5.18 (A) Variation of number of defects \((n) \), interfacial free energy \((F_i) \), maximum and minimum thickness \((H_{\text{max}}, H_{\text{min}}) \), fractional flat area \((f_d) \), fractional completion of SPS with non dimensional time \((T) \) in a domain size of 256\(\lambda_m \). (B) Variation of excess free energy \((F_e) \) and total free energy \((F_t) \) with non dimensional time \((T) \). Mean film thickness, \(h_0 = 3 \text{ nm} \). Parameters are \(R = -0.1, D = 0.2. M_2 = 10^6 \) and \(b = 4 \text{ nm}^{-1} \). .. 109

xxi
5.19 Magnified view of MPS in the intermediate stage. Domain size is 256\(\lambda_m\). Other parameters are \(R = -0.1\) and \(D = 0.2\), film thickness, \(h_0 = 3\) nm. \(M_2 = 10^6\) and \(b = 4\) nm\(^{-1}\). The dashed, solid and dotted lines refers to increasing times.

5.20 (A) Variation of number of defects \((n)\), interfacial free energy \((F_i)\), maximum and minimum thickness \((H_{max}, H_{min})\), fractional flat area \((f_d)\), fractional completion of SPS with non dimensional time \((T)\) in a domain size of 256\(\lambda_m\). (B) Variation of excess free energy \((F_e)\) and total free energy \((F_t)\) with non dimensional time \((T)\). Mean film thickness, \(h_0 = 3\) nm. Parameters are \(R = -0.1\), \(D = 0.2\). \(M_2 = 10^6\) and \(b = 6\) nm\(^{-1}\).

5.21 (A) Variation of number of defects \((n)\), interfacial free energy \((F_i)\), maximum and minimum thickness \((H_{max}, H_{min})\), fractional flat area \((f_d)\), fractional completion of SPS with non dimensional time \((T)\) in a domain size of 256\(\lambda_m\). (B) Variation of excess free energy \((F_e)\) and total free energy \((F_t)\) with non dimensional time \((T)\). Mean film thickness, \(h_0 = 3\) nm. Parameters are \(R = -0.1\), \(D = 0.2\). \(M_2 = 10^6\) and \(b = 8\) nm\(^{-1}\).

5.22 (A) Variation of number of defects \((n)\), interfacial free energy \((F_i)\), maximum and minimum thickness \((H_{max}, H_{min})\), fractional flat area \((f_d)\), fractional completion of SPS with non dimensional time \((T)\) in a domain size of 256\(\lambda_m\). (B) Variation of excess free energy \((F_e)\) and total free energy \((F_t)\) with non dimensional time \((T)\). Mean film thickness, \(h_0 = 2\) nm. Parameters are \(R = -0.1\), \(D = 0.3\), \(\delta = 0.6\) nm. \(M_2 = 10^6\) and \(b = 2\) nm\(^{-1}\).
5.23 (A) Variation of number of defects \((n) \), interfacial free energy \((F_i) \), maximum and minimum thickness \((H_{max}, H_{min}) \), fractional flat area \((f_d) \), fractional completion of SPS with non dimensional time \((T) \) in a domain size of \(256 \lambda_m \). (B) Variation of excess free energy \((F_e) \) and total free energy \((F_t) \) with non dimensional time \((T) \). Mean film thickness, \(h_0 = 1.5 \) nm. Parameters are \(R = -0.1 \), \(D = 0.4 \), \(\delta = 0.6 \) nm. \(M_2 = 10^6 \) and \(b = 2 \) nm\(^{-1} \).

5.24 (A) Variation of number of defects \((n) \), interfacial free energy \((F_i) \), maximum and minimum thickness \((H_{max}, H_{min}) \), fractional flat area \((f_d) \), fractional completion of SPS with non dimensional time \((T) \) in a domain size of \(256 \lambda_m \). (B) Variation of excess free energy \((F_e) \) and total free energy \((F_t) \) with non dimensional time \((T) \). Mean film thickness, \(h_0 = 1.2 \) nm. Parameters are \(R = -0.1 \), \(D = 0.5 \), \(\delta = 0.6 \) nm. \(M_2 = 10^6 \) and \(b = 2 \) nm\(^{-1} \).

5.25 Variation of the fraction distribution with film thickness in a domain size of \(256 \lambda_m \). Mean film thickness, \(h_0 = 3.0 \) nm. Parameters are \(R = -0.1 \), \(D = 0.2 \), \(\delta = 0.6 \) nm. \(M_2 = 10^2 \) and \(b = 2 \) nm\(^{-1} \). Increase in number refers to increasing time.

5.26 Variation of the fraction distribution with film thickness in a domain size of \(256 \lambda_m \). Mean film thickness, \(h_0 = 3.0 \) nm. Parameters are \(R = -0.1 \), \(D = 0.2 \), \(\delta = 0.6 \) nm. \(M_2 = 10^6 \) and \(b = 2 \) nm\(^{-1} \). Increase in number refers to increasing time.

5.27 Variation of the fraction distribution with film thickness in a domain size of \(256 \lambda_m \). Mean film thickness, \(h_0 = 3.0 \) nm. Parameters are \(R = -0.1 \), \(D = 0.2 \), \(\delta = 0.6 \) nm. \(M_2 = 10^6 \) and \(b = 4 \) nm\(^{-1} \). Increase in number refers to increasing time.
5.28 Variation of the fraction distribution with film thickness in a domain size of $256 \lambda_m$. Mean film thickness, $h_0 = 3.0$ nm. Parameters are $R = -0.1$, $D = 0.2$, $\delta = 0.6$ nm. $M_2 = 10^6$ and $b = 6$ nm$^{-1}$. Increase in number refers to increasing time.

5.29 Variation of the fraction distribution with film thickness in a domain size of $256 \lambda_m$. Mean film thickness, $h_0 = 3.0$ nm. Parameters are $R = -0.1$, $D = 0.2$, $\delta = 0.6$ nm. $M_2 = 10^6$ and $b = 8$ nm$^{-1}$. Increase in number refers to increasing time.

5.30 Variation of the fraction distribution with film thickness in a domain size of $256 \lambda_m$. Mean film thickness, $h_0 = 4.0$ nm. Parameters are $R = -0.1$, $D = 0.2$, $\delta = 0.8$ nm. $M_2 = 10^6$ and $b = 2$ nm$^{-1}$. Increase in number refers to increasing time.

5.31 Variation of the fraction distribution with film thickness in a domain size of $256 \lambda_m$. Mean film thickness, $h_0 = 4.0$ nm. Parameters are $R = -0.1$, $D = 0.2$, $\delta = 0.8$ nm. $M_2 = 10^6$ and $b = 8$ nm$^{-1}$. Increase in number refers to increasing time.

5.32 Phase diagram for sub spinodal length scales in the intermediate stage of phase separation for different parametric values of M_2, b, D, δ. Domain size of $10 \lambda_m$.

5.33 Phase diagram for sub spinodal length scales in the intermediate stage of phase separation for different parametric values of M_2, b, D, δ. Domain size of $10 \lambda_m$.

xxiv