STUDIES ON POLY(LACTIC ACID) BASED BLENDS AND COMPOSITES

RAJENDRA KUMAR SINGLA

CENTRE FOR POLYMER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY DELHI
JANUARY 2017
STUDIES ON POLY(LACTIC ACID) BASED BLENDS AND COMPOSITES

by

RAJENDRA KUMAR SINGLA

Centre for Polymer Science and Engineering

Submitted

In fulfillment of the requirements of the degree of Doctor of Philosophy

to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI

JANUARY 2017
Dedicated To

My Late Father & My Family
CERTIFICATE

This is to certify that the thesis entitled “Studies on poly(lactic acid) based blends and composites” being submitted by Mr. Rajendra Kumar Singla to the Indian Institute of Technology Delhi for the award of the degree of Doctor of Philosophy, in the Centre for Polymer Science and Engineering, is a record of original and bonafide research work carried out by him. Rajendra Kumar Singla has fulfilled the requirements for the submission of this thesis, which to my knowledge has reached the requisite standard.

The research reported and results presented in this thesis are original and have not been submitted, in part or full, to any other University or Institute for the award of any degree or diploma.

Dr. S. N. Maiti
Emeritus Professor, Centre for Polymer Science & Engineering
Indian Institute of Technology Delhi
New Delhi 110016
India

Dr. A. K. Ghosh
Professor, Centre for Polymer Science and Engineering
Indian Institute of Technology Delhi
New Delhi 110016
India
ACKNOWLEDGEMENTS

First of all with all gratitude and indebtedness, I express my sincere thanks to the Almighty from depth of my heart for blessing me with two esteemed supervisors, Prof. S. N. Maiti and Prof. A. K. Ghosh for guiding me all the way during my research work. I am deeply indebted to them for their mentoring, able guidance, stimulating suggestions, inspiring thoughts, cool composure, enthusiasm, critical comments and tremendous help for me throughout my doctoral studies. I appreciate the time and ideas they had given me to conduct my work in planned and productive manner. I learnt a great deal from interacting with them. I wish to thank both of them for their patience with me.

I express my deep sense of gratitude to my senior research committee members, Prof. Mangla Joshi, Prof. Veena Choudary, and Dr. Bhabani Satapathy, who have monitored my work and provided me the valuable suggestions. I would like to offer my gracious thanks to Prof. A. K. Gupta, Dr. J. Jacob, Dr. L. Nebhani, and Dr. S. Saha who in spite of their busy schedule have always made themselves available for valuable discussions, support and advice.

My thanks to Mr. Surender Sharma, Mr. Ashok Kapoor, Mr. Shivkant, Mr. Islam, Mr. Gajraj, Mr. Sharma and Mr. Kuldeep of SEM lab, and all official staffs of CPSE for their immediate help whenever needed.

This work would not be possible without the support and encouragements from my friends, seniors, and juniors. My special thanks go to Dr. Khushboo, Dr. Rishi, Astha, Achla, Ranjana, Harjeet S. Jaggi, Tahir Zafar, Dr. Rajender Malik, Dr. Pawan Verma, Dr. Abhishek Gandhi, Deepika Malpani, Shivraj Choudhary, Sanjay Singh and Dr. Pradeep
Muwal for their co-operation and moral support during my difficult situations. I would like to thank Anindya, Sabapathy, Swarna, Ritima, Prajesh, Neetu, Meenakshi, Bindu, Sampat, V. P. Singh, Pragati, Shilpi, Devender, Debang, Bhawna, Banpreet, Reshu, Savita, Harshita, Dr. Sanjeev, Dr. Sunil, Dr. Rakesh, Dr. Priyanka, Dr. Manisha, Dr. Sneh Bharti, Dr. Sandeep Tripathi, Sumbul, Agni, Ifra, Smurti, Jitender Panda and others, for their love and never ending support through the years.

The most important part of my life is my family. I dedicate this entire work to my Late. Father, who taught me hard working in life and blessed me from another planet. My mother, sisters, brothers and my family have always supported me with their unconditional love and care and my deep regards are always with them who have been with me when time was rough.

I feel immense honour and pride to acknowledge Indian Institute of Technology Delhi, for providing me excellent environment and facilities throughout my study period. I convey my deep regards and thanks to the University Grants Commission, Government of India, for providing me research funding for my Ph.D degree at IIT Delhi.

I thank the ALMIGHTY for giving me ample strength and right path to attain this cherished moment in my life.

Date:

Place: New Delhi
(Rajendra Kumar Singla)
ABSTRACT

In recent years increasing scarcity of oil resources, energy crisis, and white pollution urge researchers to replace conventional petroleum based plastics with renewable, bio-based and bio-degradable materials. Poly(lactic acid) (PLA) has drawn attention of researchers due to high strength, high stiffness, good bio-compatibility, excellent transparency and complete biodegradability. However, PLA suffers from major disadvantages notably brittleness (low strain-at-break and high modulus), low heat distortion temperature (HDT, <60°C), poor impact strength, low rate of crystallization and poor processability. These shortcomings significantly restrict industrial applications of PLA particularly for durable applications such as in automotive and electronics. The blending of bio-degradable polymers with fillers or elastomers is thought to be a cheaper and less time consuming process of modifying polymer properties.

PLA/lignin green biocomposites at varying concentrations of lignin from 0-30 wt.% without use of compatibilizer were prepared which showed improved biodegradability and tensile modulus. Increased tensile modulus indicated significant phase interaction. Tensile strength decreased with increase in lignin in the PLA matrix. Because of stress concentrations, mechanical restraints and phase adhesion the matrix ductility decreases at large deformations resulting in the decrease of elongation-at-break as well. In the present study to understand the phase interaction between PLA and lignin, tensile properties are analyzed employing predictive models.

However, increased embrittlement of the biocomposite affected tensile strength, elongation, and impact strength properties moderately. Therefore, to widen applications of PLA an elastomeric copolymer ethylene-co-vinyl acetate (EVA) was blended with PLA. Blends of
PLA with various concentrations of EVA (vinyl acetate content 50 wt.%) were prepared to modify mechanical properties. Incorporation of EVA co-polymer into PLA decreased the crystallinity and substantially enhanced its flexibility. The tensile modulus and strength decreased while toughness and ductility increased significantly. The impact strength of PLA enhanced significantly making the blend super tough. Tensile properties of the blends were described and correlated with theoretical models. Morphological analysis of impact tested samples demonstrated various fracture mechanisms such as crazing/micro-cracks formation, fibrillation, and shear yielding.

Rheological studies of the blends were performed on a capillary rheometer in which shear stress increased with increase in the volume fraction of the blending polymer, Φ_d, as well as shear rate. Melt viscosity of the blends increased with increase in Φ_d and decreased with rise in temperature. Power law relationship was followed by the blends. Power law index, n, decreased with increase in Φ_d, while the trend was opposite with increase in temperature. Consistency index values increased with Φ_d. The values of the consistency, K, decreased with rise in temperature for a particular blend composition. The activation energy increased with increase in Φ_d which may be due to the enhanced phase adhesion between PLA and EVA. The frequency sweep data of parallel plate rheology indicated monotonous increase in storage modulus, loss modulus and complex viscosity with EVA concentration due to strong phase interaction.

The optimized PLA/EVA super tough blend with 30 wt. % of EVA was further modified with varying concentrations (0.4-9.1 wt.%) of halloysite nanotubes (HNT). TGA study indicated that incorporation of HNT improved the thermal stability of the nanocomposites remarkably. Enhanced tensile modulus and impact strength demonstrated the strengthening
and toughening effect of halloysite in the nanocomposites, simultaneously. The impact fractured surface morphologies and halloysite induced morphological changes of the nanocomposites were evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. FTIR investigation revealed interactions between HNT and PLA. Glass transition behaviour of the nanocomposites, as shown by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), presents strong evidence in favour of phase interaction and reinforcing effect of halloysite. Enhanced tensile strength and elongation-at-break demonstrated toughening effect of halloysite.

In the future, PLA/EVA/HNT ternary nanocomposites can be explored for applications in services e.g. as wares, folded cartons, durable goods, laptop, computer and mobile housing, packaging and automotive components. PLA/lignin composites are suitable for nondurable applications in short term products, mulch films, as well as grocery and composting bags, trays, bottle and other indoor applications.
Table of contents

Certificate i
Acknowledgements iii
Abstract v
List of Contents ix
List of Figures xv
List of Tables xxi
List of Abbreviations xxiii

Chapter 1 Introduction and literature survey

1.1 Introduction ... 1
1.2 Polymer blends and composites .. 1
1.2.1 Toughened polymer .. 2
1.2.2 Rubber toughened polymer .. 3
1.3 PLA - A biodegradable polymer ... 6
1.3.1 Advantages of PLA ... 8
1.3.2 Limitations of PLA .. 9
1.3.3 Applications of PLA ... 10
1.4 PLA blends - A literature survey ... 11
1.4.1 EVA as impact modifier ... 14
1.5 Polymer composites .. 14
1.6 Polymer nanocomposites ... 16
1.7 Polymer-halloysite nanocomposites ... 22
1.8 Toughened PLA/HNT nanocomposites ... 25
1.9 Objectives of the present study ... 28
1.9.1 Plan of the work .. 28
1.10 Applications ... 28
1.11 References ... 29

Chapter 2 Materials and methods

2.1 Experimental ... 41
2.1.1 Introduction .. 41
2.1.2 Materials .. 41
2.1.2.1 PLA .. 41
2.1.2.2 Characterization of PLA .. 41
2.1.2.3 Polarimetry test .. 41
2.1.2.4 X-ray diffraction pattern (XRD) of PLA .. 42
2.1.2.5 Lignin ... 43
2.1.2.6 Characterization of lignin .. 44
2.1.2.7 Average particle diameter ... 44
2.1.2.8 X-ray diffraction pattern (XRD) of lignin .. 44
2.1.2.9 Thermogravimetric analysis (TGA) of lignin ... 45
2.1.2.10 EVA .. 46
2.1.2.11 Characterization of EVA ... 46
2.1.2.12 HNT ... 46
2.1.2.13 Characterization of HNT ... 48
2.1.2.14 X-ray diffraction pattern (XRD) of HNT .. 48
2.1.2.15 Thermogravimetric analysis (TGA) of HNT ... 49
2.1.3 Preparation of PLA/lignin composites ... 49
2.1.4 Preparation of composite specimens .. 50
2.1.5 Preparation of PLA/EVA blends and PLA/EVA/HNT nanocomposites 51
2.1.5.1 Composition of blends and nanocomposites ... 51
2.1.6 Preparation of the test specimens ... 53
2.1.6.1 Melt compounding and injection molding .. 53
2.1.7 Testing and measurement techniques .. 54
2.1.8 Thermal characterization ... 54
2.1.8.1 Differential scanning calorimetry (DSC) .. 54
2.1.8.2 Thermo-gravimetric analysis (TGA) ... 55
2.1.9 Mechanical properties ... 56
2.1.9.1 Tensile properties .. 56
2.1.9.2 Izod impact test ... 57
2.1.10 Morphological studies ... 58
2.1.10.1 Scanning electron microscopy (SEM) .. 58
Chapter 3 Mechanical, thermal, morphological and rheological characterizations of PLA/Lignin composites

3.1 Introduction...67
3.2 Experimental...67
 3.2.1 Blend formulation...67
3.3 Measurements...68
3.4 Results and discussion..68
 3.4.1 Thermal characterization...68
 3.4.2 FT-IR study..72
 3.4.3 Tensile properties...73
 3.4.3.1 Stress-strain curve..73
 3.4.3.2 Tensile modulus...74
 3.4.3.3 Tensile strength...78
 3.4.3.4 Elongation-at-break..82
 3.4.4 Impact strength...84
3.5 Cryogenically fractured surface morphology.............................86
3.6 Rheological analysis...88
 3.6.1 Dynamic mechanical analysis (DMA).................................88
3.7 Parallel plate rheometry...91
 3.7.1 Dynamic viscoelastic properties.......................................91
3.8 Conclusions..95
3.9 References..96
Chapter 4A Mechanical, thermal and morphological properties of PLA/EVA blends

4.1 Introduction..101
4.2 Experimental..101
 4.2.1 Blend formulations...101
4.3 Measurements...102
4.4 Results and discussion...102
 4.4.1 Degree of crystallinity...102
 4.4.2 Thermogravimetric analysis..104
4.5 Mechanical properties..106
 4.5.1 Tensile stress-strain curves..106
 4.5.2 Tensile modulus..108
 4.5.3 Tensile strength...110
 4.5.4 Elongation-at-break...113
 4.5.5 Impact strength...115
4.6 Fracture surface morphology and mechanism of toughening..117
4.7 Conclusions...121
4.8 References...123

Chapter 4B Thermo-mechanical and rheological characterizations of PLA/EVA blends

4.9 Rheological characterization..127
 4.9.1 Introduction...127
4.10 Results and discussion..127
 4.10.1 Dynamic mechanical analysis (DMA)..127
 4.10.2 Shear rheology..131
 4.10.3 FT-IR study...139
 4.10.4 Capillary rheometry...140
 4.10.4.1 Flow curves (Shear stress vs. shear rate curves)...140
 4.10.4.2 Viscosity curves..141
 4.10.4.3 Power law index (n)..143
 4.10.4.4 Consistency coefficient (K)...146
 4.10.4.5 Flow activation energy..147
 4.10.4.6 Conclusions..148
Chapter 5 Thermal, static and dynamic mechanical and rheological properties of PLA/EVA/HNT nanocomposites

5.1 Introduction ..155
5.2 Experimental ...156
 5.2.1 Nanocomposite formulations ...156
5.3 Measurements ...156
5.4 Results and discussion ...156
 5.4.1 Thermal analysis ...156
 5.4.2 Mechanical properties ..160
 5.4.2.1 Tensile stress-strain curves ..160
 5.4.3 Morphology analysis ..163
 5.4.4 Fourier transform infrared spectroscopy ...168
 5.4.5 Dynamic mechanical properties ..170
 5.4.6 Dynamic oscillatory rheological analysis ...173
 5.4.6.1 Amplitude sweep ..173
 5.4.6.2 Frequency sweep ..174
 5.4.6.3 Phase angle and frequency ..176
5.5 Conclusions ...177
5.6 References ...179

Chapter 6 Summary, conclusions and future scope

6.1 Summary of thesis ...183
6.2 Conclusions ..185
6.3 Future scope of the work ..185

List of publications and biography

List of publications ..187
Bio-data of the author ..189
List of Figures

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Various applications of PLA</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Basic structure of lignin</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Structure of halloysite nanotubes</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>XRD pattern of PLA</td>
<td>43</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Particle size distribution plot of the lignin particles</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>XRD pattern of lignin</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>TGA/DTG traces of lignin</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>TGA/DTG traces of EVA</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>DSC trace of EVA</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>XRD pattern of HNT</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>(a) TGA (b) DTG traces of HNT</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Schematic of shear induced orientation of HNTs through melt recirculation in the nanocomposites</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Schematic representation of TGA and DTG curves of a polymer for evaluation of T_{onset}, T_{max}, and T_{final} values</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>DSC traces of PLA and its composites with various lignin contents recorded during the second heating scan at 10 °C/min</td>
<td>57</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>TGA (a) and DTG (b) scans of PLA, lignin and PLA/lignin composites</td>
<td>68</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>FT-IR scans of PLA and its composites</td>
<td>70</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Variations of stress and strain of PLA/lignin composites</td>
<td>72</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Variation of tensile modulus (E_c) of PLA/lignin composites against Φ_f. Inset: Dependence of tensile modulus of composites versus crystallinity</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Comparison of relative tensile modulus data of PLA/lignin composites, Einstein model without adhesion, curve I, and Einstein model with adhesion, curve II against Φ_f</td>
<td>75</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Plot of normalized tensile modulus, $(E_c/X_c)/(E_p/X_p)$, of PLA/lignin composites against Φ_f</td>
<td>77</td>
</tr>
</tbody>
</table>
Figure 3.8 Plot of tensile strength (σ_c) of PLA/lignin composites against Φ_f. Inset: Variations of tensile strength of composites versus crystallinity..............................78
Figure 3.9 Comparison of relative tensile strength with Nicolais Narkis, Nielson model, with K and a value indicated in PLA/lignin composites against Φ_f...79
Figure 3.10 Plot of normalized tensile strength, (σ_c/X_c)/(σ_p/X_p), of PLA/lignin composites against Φ_f...81
Figure 3.11 Variation of elongation-at-break (%) of PLA/lignin composites against Φ_f. Inset: Dependence of elongation-at-break of composites versus crystallinity.........................82
Figure 3.12 Plot of relative elongation-at-break, (ϵ_c/ϵ_p) data of PLA/lignin composites with Nielson model, against Φ_f...83
Figure 3.13 Variations of normalized elongation-at-break, (ϵ_c/X_c)/(ϵ_p/X_p), of PLA/lignin composites against Φ_f..84
Figure 3.14 Izod impact strength of PLA/lignin composites versus Φ_f. Inset: Variation of impact strength of composites against crystallinity..85
Figure 3.15 Variations of normalized impact strength, (I_c/X_c)/(I_p/X_p), of PLA/lignin composites against Φ_f...86
Figure 3.16 SEM micrographs of lignin and freeze fractured surfaces of PLA/lignin composites at varying Φ_f: (a) lignin, (b) PLL0, (c) PLL5, (d) PLL10, (e) PLL20 and (f) PLL30..87
Figure 3.17 Storage modulus (E') vs. temperature (°C) curves of PLA and composites......88
Figure 3.18 Loss modulus (E'') vs. temperature (°C) curves of PLA and composites........89
Figure 3.19 Tan δ vs. temperature (°C) curves for PLA and composites.........................90
Figure 3.20 Storage modulus vs. frequency plot of PLA, PLA/lignin composites.............91
Figure 3.21 Loss modulus vs. frequency plot of PLA, PLA/lignin composites.................92
Figure 3.22 Tan delta vs. frequency plot of PLA, PLA/lignin composites......................93
Figure 3.23 Complex viscosity vs. frequency plot of PLA, PLA/lignin composites...........93
Figure 3.24 Cole-Cole plot of PLA and PLA/lignin composites.................................94
Figure 4.1 DSC traces of PLA and PLA/EVA blends recorded during the second heating at 5 °C/min...102
Figure 4.2 (a) TGA and (b) DTG scans of PLA, EVA and PLA/EVA blends..............104
Figure 4.3 Variation of stress and strain with Φ_d in PLA/EVA blends. Inset: Variation of stress and strain for pure EVA.

Figure 4.4 Plot of variations of E_b/E_m of PLA/EVA blends against Φ_d and their predictive behaviour according to the rule of mixture, Eq. (4.1), and the foam model, Eq.(4.2). Inset: Dependence of normalized tensile modulus, $[(E_b/X_b)/(E_m/X_m)]$, of PLA/EVA blends against Φ_d.

Figure 4.5 Plot of variations of σ_b/σ_m of PLA/EVA blends (\bullet), Nicolais Narkis model (\cdots), [Eq. (4.3)] with $K=0.91$, and Porosity model (\cdot), [Eq. (4.4)] with $\alpha=2.06$ against Φ_d. Inset: Variations of normalized relative tensile strength $[(\sigma_b/X_b)/(\sigma_m/X_m)]$ of PLA/EVA blends against Φ_d.

Figure 4.6 Variation of relative elongation-at-break $(\varepsilon_b/\varepsilon_m)$ of PLA/EVA blends against Φ_d. Inset: Variation of relative normalized elongation-at-break $(\varepsilon_b/X_b)/(\varepsilon_m/X_m)$ of PLA/EVA blends with Φ_d.

Figure 4.7 Variation of normalized impact strength $(I_b/I_m)/(I_m/I_m)$, of PLA/EVA blends against Φ_d.

Figure 4.8 Scanning electron micrograph of PLA/EVA blends at 2000 magnification at varying Φ_d: (a) 0, (b) 0.06, (c) 0.12, (d) 0.24 and (e) 0.35. Figure 4.8 (f) contain photographs of notched Izod impact fractured samples. Samples at Φ_d 0, 0.06 and 0.12 show complete breakage while at Φ_d =0.24 and Φ_d =0.35 exhibit partial breakage with extensive stress whitening.

Figure 4.9 Variation of normalized impact strength $(I_b/I_b)/(I_m/I_m)$ of PLA/EVA blends against interparticle distance (τ).

Figure 4.10 Storage modulus (E') vs. temperature (oC) curves of PLA and PLA/EVA blends with different EVA concentrations. Inset shows the plot of E' vs. temperature of EVA.

Figure 4.11 Loss modulus (E'') vs. temperature (oC) curve of PLA and PLA/EVA blends with different EVA concentrations. Inset shows the plot of E'' vs. temperature of EVA.

Figure 4.12 Comparison of tan δ vs. temperature curves with rule of mixture (line) and PLA/EVA blends (line with hollow circle): (a) PLA (b) PLE5 (c) PLE10 (d) PLE20 and (e) PLE30.

Figure 4.13 Dynamic strain sweep of PLA, and PLA/EVA blend.

Figure 4.14 Complex viscosity vs. frequency plot of PLA, PLA/EVA blends.
Figure 4.15 Storage modulus vs. frequency plot of PLA, PLA/EVA blends
Figure 4.16 Loss modulus vs. frequency plot of PLA, PLA/EVA blends
Figure 4.17 Tan delta vs. frequency curve of PLA and PLA/EVA blends
Figure 4.18 Cole-Cole plot of PLA and PLA/EVA blends
Figure 4.19 FTIR spectra of PLA, PLA/EVA blends
Figure 4.20 Variations of τ_w against γ_w at 180 °C, 190 °C and 200 °C in PLA/EVA blends at varying Φ_d values: (■) 0, (●) 0.06, (▲) 0.12, (▼) 0.24, and (◄) 0.35
Figure 4.21 Variations of melt viscosity (η_a) versus shear rate (γ_w) at 180 °C, 190 °C and 200 °C for PLA/EVA blends at varying Φ_d values: (■) 0, (●) 0.06, (▲) 0.12, (▼) 0.24, and (◄) 0.35
Figure 4.22 Plots of melt viscosity (η_a) versus Φ_d at 180 °C, 190 °C and 200 °C for PLA/EVA blends
Figure 4.23 Plots of n versus Φ_d at 180 °C, 190 °C and 200 °C temperatures for PLA/EVA blend,
Figure 4.24 Plots of K versus Φ_d at 180 °C, 190 °C and 200 °C temperatures for PLA/EVA blend
Figure 4.25 Plots of log η_a versus 1/T of PLA/EVA blends at 180 °C, 190 °C and 200 °C temperature
Figure 5.1 DSC thermograms of PLA/EVA blend and PLA/EVA/HNT nanocomposites
Figure 5.2 (a) TGA (b) DTG curves for HNT, PLA/EVA blend and PLA/EVA/HNT nanocomposites
Figure 5.3 Tensile stress-strain curves of PLA/EVA (70:30) blend and PLA/EVA/HNT nanocomposites
Figure 5.4 Mechanical parameters for composites with different HNT concentrations, (a) Tensile modulus (b) Tensile strength (c) Elongation-at-break and (d) Notched Izod impact strength
Figure 5.5 WAXD patterns of HNT, PLA/EVA blends and PLA/EVA/HNT nanocomposites
Figure 5.6 SEM micrographs of (a) HNTs and PLA/EVA/HNT ternary nanocomposites at varying HNT concentrations: (b) PLE-H0, (c) PLE-H1, (d) PLE-H2, (e) PLE-H3, and (f) PLE-H4 ...166

Figure 5.7 TEM micrographs of HNTs (a) and PLA/EVA/HNT ternary nanocomposites: (b) PLE-H1, (c) PLE-H2, (d) PLE-H3, and (e) PLE-H4...167

Figure 5.8: FT-IR spectra of HNT and PLA/EVA/HNT ternary nanocomposites..............169

Figure 5.9 Storage modulus (E') vs. temperature (°C) curves of PLA/EVA blend and its nanocomposites with different HNT concentrations..170

Figure 5.10 Tan δ vs. temperature curve of PLA/EVA blend and PLA/EVA/HNT nanocomposites with varying HNT concentrations (a): variation of tan δ vs. temperature for rule of mixture (line) and nanocomposites (line with filled circle) for PLA/EVA and the PLA/EVA/HNT nanocomposites (b-f)...172

Figure 5.11 Plots of storage modulus vs. frequency at 190 °C temperature for PLA/EVA/HNT nanocomposites...174

Figure 5.12 Plots of loss modulus vs. frequency at 190 °C temperature for the PLA/EVA/HNT nanocomposites...175

Figure 5.13 Plots of complex viscosity vs. frequency at 190 °C temperature for PLA/EVA/HNT nanocomposites...176

Figure 5.14 Van Gurp Palmen plots at 190 °C temperature for PLA/EVA/HNT nanocomposites...177
List of Tables

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Comparison of typical PLA properties [21, 36] with different thermoplastic resins</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>PLA/HNT nanocomposites and their key findings</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>General properties of PLA</td>
<td>42</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Properties of lignin</td>
<td>43</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Properties of EVA</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Properties of HNT</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Extruder temperature (°C) profile</td>
<td>50</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Designations and compositions of the composite</td>
<td>50</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Parameters for injection molding</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Blends compositions and sample designations</td>
<td>52</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Designations and compositions of the blends</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Thermal characteristics of PLA and PLA/lignin composites at 10 °C/min. heating rate</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Characteristic temperatures of PLA composites from TGA</td>
<td>71</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Values of adhesion parameter, K, and stress concentration constant, a, in PLA/lignin composites</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Compositions and values of DSC crystallization parameters of PLA in PLA/EVA blends</td>
<td>103</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Compositions and TGA parameters (T_{onset}, T_{max}, and T_f) in PLA, EVA and PLA/EVA blends</td>
<td>105</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Tensile properties and crystallinity data of PLA/EVA blends</td>
<td>107</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Values of the adhesion parameter K, Eq. (4.3), and stress concentration factor α, Eq. (4.4), in PLA/EVA blends</td>
<td>112</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Values of impact strength (I_b), domain size (d_w), and interparticle distance (τ), of PLA/EVA blends</td>
<td>116</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Slope of log G' and log G'' vs. log ω for PLA/EVA blends</td>
<td>137</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Values of consistency coefficient, K, (Pa.s^n) at 180 °C, 190 °C and 200 °C at varying Φ_d</td>
<td>147</td>
</tr>
</tbody>
</table>
Table 4.8 The values of activation energy of PLA/EVA blends

Table 5.1 Formulations of PLA/EVA/HNT nanocomposite and values of DSC crystallization parameters
List of Abbreviations & Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>DMA</td>
<td>Dynamic mechanical analysis</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>D_w</td>
<td>Weight average particle size</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethylene-co-vinyl acetate</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform infra red spectroscopy</td>
</tr>
<tr>
<td>G^*</td>
<td>Complex modulus</td>
</tr>
<tr>
<td>G'</td>
<td>Elastic modulus</td>
</tr>
<tr>
<td>G''</td>
<td>Viscous modulus</td>
</tr>
<tr>
<td>HNT</td>
<td>Halloysite nanotube</td>
</tr>
<tr>
<td>MFI</td>
<td>Melt flow index</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic acid)</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>T_{cc}</td>
<td>Cold crystallization temperature</td>
</tr>
<tr>
<td>T_{onset}</td>
<td>Onset of degradation temperature</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>WAXD</td>
<td>Wide Angle X-ray Diffraction</td>
</tr>
<tr>
<td>X_c</td>
<td>Degree of crystallinity</td>
</tr>
<tr>
<td>ΔE</td>
<td>Activation energy</td>
</tr>
<tr>
<td>E_c</td>
<td>Tensile modulus of composite</td>
</tr>
<tr>
<td>E_p</td>
<td>Tensile modulus of PLA</td>
</tr>
</tbody>
</table>
\(\Delta H_m \) Heat of melting

\(\Phi_f \) Filler volume fraction

\(\Phi_d \) Volume fraction of EVA

\(\sigma_c \) Tensile strength of composites

\(\sigma_P \) Tensile strength of PLA

\(\tau \) Matrix ligament thickness

\(\tau_w \) Shear stress

\(\eta^* \) Complex viscosity

\(\alpha \) Stress concentration factor

\(\delta \) Phase angle