Short Communication

A note on pseudo-invexity and symmetric duality

S. Chandra *, V. Kumar

Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India

Received 27 September 1994: accepted 24 October 1996

Abstract

A pair of symmetric dual nonlinear programming problems is presented and duality theorems are established under pseudo-invexity type assumptions on the kernel function. This formulation removes certain inconsistencies in a recently introduced primal–dual pair and gives the correct proof of various duality theorems.

Keywords: Symmetric duality; Nonlinear programming; Fractional programming; Pseudoinvexity

1. Introduction

Following the earlier work of Dom [5], Dantzig et al. [4] and Mond [8] on symmetric duality, many researchers attempted to generalize the formulation and weaken the convexity–concavity hypothesis required on the kernel function $K(x, y)$. Mond and Weir [10] weakened the convexity–concavity hypothesis for $K(x, y)$ to pseudoconvexity–pseudconcavity and Chandra et al. [3] studied symmetric duality in fractional programming. In [2], Chandra et al. studied symmetric duality under pseudo-invexity and gave an interpretation of the main construction in terms of a constrained two person game.

Recently, Nanda and Das [11] attempted to construct a pair of symmetric dual programming problems under the pseudo-invexity type restrictions on the kernel function and derive a symmetric duality theorem in nonlinear fractional programming. The purpose of this note is two fold. First, to point out that the construction of Nanda and Das [11] is not correct, and second to emphasize again (as done already in [6]) that for studying symmetric duality under pseudoconvexity or pseudo-invexity type assumptions, the construction of the dual pair has to be on the lines of Mond and Weir [10] and not on the lines of Dantzig et al. [4].

Here it is remarked that the nature of the mistake in the construction of Nanda and Das [11] is similar to that of Mishra et al. [7], which has been corrected and modified by Kumar et al. [6].

Certain other assumptions made by Nanda and Das [11] which do not seem to be valid, are also pointed out at appropriate places. We follow the notations of Nanda and Das [11] and present our results very briefly.

2. Problem formulation and prerequisites

Let R^n denote the n dimensional Euclidean space and R^n_+ be its nonnegative orthant. We have used the following definitions in the sequel.
Definition 1. A convex set C of \mathbb{R}^n is called a convex cone if for each $x \in C$ and $\lambda \geq 0$, $\lambda x \in C$.

Definition 2. $C^\diamond = \{z \in \mathbb{R}^n : x^T z \leq 0 \text{ for all } x \in C\}$ is called the polar of the cone C.

Definition 3. Let $S \subseteq \mathbb{R}^n$ be open and $f : S \to \mathbb{R}$. The function f is said to be pseudoinvex with respect to η on S, where η is a function from $S \times S$ to \mathbb{R}^n, if

$$[\eta(x,u)]^T \nabla f(u) \geq 0 \Rightarrow f(x) \geq f(u) \quad \text{for all } x,u \in S.$$

Let C_1, C_2 be closed convex cones with nonempty interiors in \mathbb{R}^n and \mathbb{R}^m, respectively. Let $S_1 \subseteq \mathbb{R}^n$ and $S_2 \subseteq \mathbb{R}^m$ be open and $T = S_1 \times S_2 \subseteq \mathbb{R}^n \times \mathbb{R}^m$. Let $C_1 \times C_2 \subseteq \mathbb{R}^n \times \mathbb{R}^m$ and $p : T \to \mathbb{R}$, be a twice differentiable function which is pseudoinvex in the first variable with respect to η and $-p$ is pseudoinvex in the second variable with respect to η. Note that, $n_1 : S_1 \times S_1 \to \mathbb{R}^n$ and $n_2 : S_2 \times S_2 \to \mathbb{R}^m$. Further let $\nabla_x p(x,y)$ and $\nabla_y p(x,y)$ be the first and second order gradient vectors with respect to the first variable. $\nabla_y p(x,y)$, $\nabla_{yy} p(x,y)$, $\nabla_x p(x,y)$ and $\nabla_{xy} p(x,y)$ are defined similarly.

We present the following pair of symmetric dual programming problem.

\begin{align*}
(P) \quad \text{Min } & p(x,y) \\
\text{subject to } & \nabla_y p(x,y) \in C_2^*, \\
& y^T \nabla_x p(x,y) \geq 0,
\end{align*}

\begin{align}
x \in C_1, \quad & \tag{1}
\end{align}

\begin{align*}
(D) \quad \text{Max } & p(u,v) \\
\text{subject to } & -\nabla_x p(u,v) \in C_1^*,
\end{align*}

\begin{align}
u^T \nabla_y p(u,v) \leq 0, \quad & \tag{4}
v \in C_2. \quad & \tag{5}
\end{align}

We shall discuss the symmetric duality for the pair (P) and (D) under the following assumptions similar to [9]:

$$\eta_i(x,u) + u \in C_1, \quad \text{for all } (x,u) \in C_1 \tag{6}$$

$$\eta_2(u,v) + y \in C_2, \quad \text{for all } v, y \in C_2. \tag{7}$$

It may be noted that this assumption has not been taken by Nanda and Das in Theorem 1 of [11] while in Theorem 2 it has been taken but with the condition that $\eta_i (i = 1, 2)$ is a function from $C_1 \times C_2$ to C_i. If, in particular, $\eta_i(x,u) = (x - u)$ and $C_i = \mathbb{R}^n_+$, then it amounts to saying that $x \geq 0, u \geq 0$ implies $x - u \geq 0$, which is not true. Also the proof of Theorem 2 in [11] is not correct because of improper application of the Fritz--John Theorem.

On the other hand, let us take $p(x,y) = e^{x-y}$. It can be seen that $p(x,y)$ is pseudoconvex in x for a fixed y and pseudocoercive in y for a fixed x. Hence satisfies the pseudoinvexity conditions of Nanda and Das [11] with $\eta(x,u) = (x - u)$. With this $p(x,y)$, the primal and dual problems of [11] reduce to the following

\begin{align*}
(P) \quad & \text{Min } f(x,y) = e^{x-y} + ye^{x-y} \\
\text{subject to } & -e^{x-y} \in C_2^*,
\end{align*}

\begin{align*}
(x,y) \in C_1 \times C_2. \tag{10}
\end{align*}

\begin{align*}
(D) \quad & \text{Max } g(x,y) = e^{x-y} + xe^{x-y} \\
\text{subject to } & -e^{x-y} \in C_1^*, \\
(x,y) \in C_1 \times C_2. \tag{11}
\end{align*}

Taking $C_1 = \mathbb{R}^+, C_2 = \mathbb{R}^*$, problems (P) and (D) become

\begin{align*}
(P) \quad & \text{Min } e^{(x-y)}(1 + y), \text{ s.t. } x, y \geq 0,
\end{align*}

\begin{align*}
(D) \quad & \text{Max } e^{(x-y)}(1 - x), \text{ s.t. } x, y \geq 0.
\end{align*}

It is easily seen that $f(0,1) = 2/e < 1 = g(0,0)$, and hence the weak duality theorem is contradicted.

In the next section, we give duality theorems for the pair (P) and (D).

3. Duality theorem

Theorem 1. (Weak duality.) Let (x,y) be feasible for (P) and (u,v) be feasible for (D). Then, $\inf(P) \geq \sup(D)$.

Proof. By (4) and (7),

$$- (\eta_i(x,u) + u)^T \nabla_x p(u,v) \leq 0,$$
(\eta_1(x,u) + u)\nabla_s p(u,v) \geq 0.

Also

\(-u)\nabla_s p(u,v) \geq 0.

Thus we have, \eta_1(x,u)\nabla_s p(u,v) \geq 0, which because of the pseudoinvexity of \(p(x,y) \) in the first variable with respect to \(\eta_1 \) implies,

\[p(x,v) \geq p(u,v). \]

Similarly by (1) and (7) we obtain

\[-(\eta_2(v,y))\nabla_s p(x,y) \geq 0, \]

which because of the pseudoinvexity of \(-p(x,y)\) in the second variable with respect to \(\eta_2 \) implies,

\[p(x, y) \geq p(x, v). \]

Therefore

\[p(x, y) \geq p(u, v), \]

and hence the theorem follows. \(\square \)

Theorem 2. (Strong duality) Let \((\bar{x}, \bar{y})\) be optimal to \((P)\). Let the matrix \(\nabla_s p(\bar{x}, \bar{y})\) be nonsingular and \(\nabla_s p(\bar{x}, \bar{y}) \neq 0\). Then \((\bar{x}, \bar{y})\) is an optimal solution to the dual problem.

Proof. Since \((\bar{x}, \bar{y})\) is optimal for \((P)\), by the Fritz–John conditions given by Bazaraa and Goode [1] for symmetric dual nonlinear programming problems defined on convex cone domain, \(\exists \lambda_1 \in \mathbb{R}, \lambda_2 \in \mathbb{C}_2, \lambda_1 \in \mathbb{R}\) such that the following are satisfied:

\[\left[\lambda_1 \nabla_s p(\bar{x}, \bar{y}) - \nabla_s p(\bar{x}, \bar{y})(\lambda_2 \bar{y} - \lambda_2) \right](x - \bar{x}) \geq 0, \]

for all \(x \in C_1, \) \(\lambda_1, \lambda_2 \neq 0\). \(\lambda_1 \in \mathbb{R}\) \(\lambda_2 \in \mathbb{C}_2, \lambda_1 \neq 0\) such that the following are satisfied:

\[\lambda_1 \nabla_s p(\bar{x}, \bar{y}) - \nabla_s p(\bar{x}, \bar{y})(\lambda_2 \bar{y} - \lambda_2) = 0, \]

\[\lambda_1 \lambda_2 \lambda_3 \neq 0. \]

\[\lambda_1 \geq 0, \lambda_2 \in \mathbb{C}_2. \lambda_3 \geq 0. \]

Multiplying (9) by \((\lambda_2 - \lambda_2 \bar{y})\) and using (10) and (11) we have,

\[(\lambda_2 - \lambda_2 \bar{y}) \nabla_s p(\bar{x}, \bar{y})(\lambda_2 - \lambda_2 \bar{y}) = 0. \]

Since it is assumed that \(\nabla_{ss} p(\bar{x}, \bar{y})\) is nonsingular, it follows that

\[\lambda_2 = \lambda_2 \bar{y}. \]

Thus, from (9) it follows that \((\lambda_1 - \lambda_2)\nabla_s p(\bar{x}, \bar{y}) = 0\) and since, by assumption, \(\nabla_s p(\bar{x}, \bar{y}) \neq 0\) we have,

\[\lambda_1 = \lambda_2. \]

If \(\lambda_1 = 0\), then \(\lambda_1 = 0\) and by (15) \(\lambda_2 = 0\), contradicting (12). Thus \(\lambda_1 > 0\) and hence \(\lambda_2 > 0\). Thus, by (15) we have \(\bar{y} \in C_2\).

Further by (13) and (8), for all \(x \in C_1\),

\[\nabla_s p(\bar{x}, \bar{y})(x - \bar{x}) \geq 0. \]

Let \(x \in C_1\), then \(\bar{x} + x \in C_1\), and so the inequality (16) implies that \(\nabla_s p(\bar{x}, \bar{y})(x) \geq 0\) for every \(x \in C_1\), i.e., \(-\nabla_s p(\bar{x}, \bar{y}) \in C_1\). Also, by letting \(x = 0\) and \(x = 2\bar{x}\) in the inequality (16), simultaneously, we get \(\nabla_s p(\bar{x}, \bar{y}) = 0\). Thus, \((\bar{x}, \bar{y})\) is feasible for \((\bar{D})\) and the value of the objective function of \((P)\) and \((\bar{D})\) is the same at \((\bar{x}, \bar{y})\). Optimality follows by the weak duality theorem. \(\square \)

4. Special case

(1) Let \(p(x,y) = \phi(x,y)/(\psi(x,y))\) where \(\phi\) and \(\psi\) are real valued functions on \(C_1 \times C_2\), such that, \(\phi(\cdot, y)\) and \(\psi(x, \cdot)\) are convex, \(\phi(x, \cdot)\) and \(\psi(\cdot, y)\) are concave. Further it is assumed that \(\psi > 0\) and \(\phi > 0\). We may observe that \((\phi(x,y))/(\psi(x,y))\) is pseudo-convex in \(x\) for a fixed \(y\) and pseudo-concave in \(y\) for a fixed \(x\) and hence satisfies required pseudoinvexity assumptions with \(\eta_1(x,u) = (x-u)\) for arbitrary but fixed \(y\) and \(\eta_2(y,u) = (y-u)\) for arbitrary but fixed \(x\). Hence for \(p(x,y)\) defined as such the pair \((P)\) and \((\bar{D})\) is equivalent to the following

\[\text{(P)} \quad \text{Min} \quad \frac{\phi(x,y)}{\psi(x,y)} \]

subject to

\[\psi(x,y)\nabla_s \phi(x,y) - \phi(x,y)\nabla_s \psi(x,y) \in C_2. \]

\[y' \left[\psi(x,y)\nabla_s \phi(x,y) - \phi(x,y)\nabla_s \psi(x,y) \right] \geq 0, \]

\[x \in C_1. \]

\[\text{(\bar{D})} \quad \text{Max} \quad \frac{\phi(u,v)}{\psi(u,v)} \]
subject to
\[-\psi(u,v)\nabla_x \phi(u,v) - \phi(u,v) \nabla_x \psi(u,v) \in C^*_1,\]
\[u^T[\psi(u,v)\nabla_x \phi(u,v) - \phi(u,v)\nabla_x \psi(u,v)] \leq 0,\]
\[v \in C^*_2,\]
which extends the symmetric duality results of Chandra et al. [3] to convex cone domains.

Acknowledgements

The authors wish to thank the referees for several valuable suggestions which have considerably improved the presentation of this paper.

References