INVESTIGATION OF PEDOT:PSS/Si HETEROJUNCTIONS AND GRAPHENE/Si SCHOTTKY DIODES FOR POTENTIAL APPLICATION IN PHOTOVOLTAICS

CHANDRA SHAKHER PATHAK

DEPARTMENT OF PHYSICS
INDIAN INSTITUTE OF TECHNOLOGY DELHI
JANUARY 2018
INVESTIGATION OF PEDOT:PSS/Si HETEROJUNCTIONS AND GRAPHENE/Si SCHOTTKY DIODES FOR POTENTIAL APPLICATION IN PHOTOVOLTAICS

by

CHANDRA SHAKHER PATHAK

Department of Physics

Submitted

in fulfillment of the requirements of the degree of Doctor of Philosophy

to the

INDIAN INSTITUTE OF TECHNOLOGY DELHI

JANUARY 2018
Certificate

We are satisfied that the thesis entitled “Investigation of PEDOT:PSS/Si Heterojunctions and Graphene/Si Schottky Diodes for Potential Application in Photovoltaics” submitted by Mr. Chandra Shakher Pathak is worthy of consideration for the award of the degree of Doctor of Philosophy and is a record of original and bonafide research work carried out by him under our supervision. The results contained in this thesis have not been submitted in part or in full to any other university or institute for the award of any degree or diploma.

Dr. Rajendra Singh
Department of Physics
Indian Institute of Technology Delhi
New Delhi, India-110016

Prof. J.P. Singh
Department of Physics
Indian Institute of Technology Delhi
New Delhi, India-110016
Acknowledgements

I would like to express my sincere gratitude to my supervisors Dr. Rajendra Singh and Prof. J.P. Singh for their guidance, continuous support and encouragement throughout this work. I could not have imagined having a better supervisor and mentor for my thesis work.

I also like to thank my SRC members Prof. S. Chaudhary, Dr. P.K. Muduli and Dr. A. Dhawan for their time, and all their inputs in this work.

I will always appreciate the support of fellow colleagues of Wide Bandgap Semiconductor Laboratory: Dr. Uday Dadwal, Dr. Ashish Kumar, Dr. Sudheer Kumar, Dr. Ashutosh Kumar, Mukesh Kumar, Manjari, Ravi, Monika, Bhera Ram, Sukhdeep, Prithu, Aaditya, Kalyani, Danish, and Aarti. I would like to extend my thanks to Dr. Raman Kapoor, Samir, Pawan and all my friends for their help.

I would like to express my gratitude to the Physics Department, IIT Delhi for awarding me the fellowship and Nanoscale Research Facility (NRF), IIT Delhi for providing characterizations facilities. I wish to thank Dr. Vamsi Komarala, Centre for Energy Studies, IIT Delhi for providing photovoltaic measurement facility. In addition to research fellowship, travel support by IIT Delhi, Department of Science and Technology (DST), and NRF for international conferences gave me an opportunity to present my research work globally.

Lastly, I would like to thank my beloved son, Mridul who always gives me sweetest smile and wife Dr. Durga Pathak for her endless support and loving care. I would like to express my heartfelt gratitude to my grandparents, late Smt. Bhawna Pathak and late Shri N.B. Pathak, My parents Smt. Deepa Pathak and Shri G.B. Pathak, My Uncle Dr. L.C. Pathak and rest family members for their love, immense cooperation and encouragement throughout my whole life. I dedicate this thesis to my grandparents and parents. I owe everything in life to my grandparents and my parents.

January 2018

Chandra Shakher Pathak
Abstract

Hybrid organic–inorganic materials play an important role in the field of optoelectronics. Now a days transparent conducting materials are needed to replace indium tin oxide as the transparent electrode for optoelectronic devices. Poly (3,4 ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is a promising candidate as a transparent electrode for optoelectronic devices. However as prepared PEDOT:PSS has less conductivity (less than 1 S/cm) and it is a major limiting factor for device applications. It is important to increase the conductivity of PEDOT:PSS. In this work the aim is to develop novel and effective methods for enhancement in electrical properties of PEDOT:PSS films, demonstrating the application of conducting and transparent PEDOT:PSS films in heterojunction diodes and solar cells.

In this thesis, the effect of various organic solvents on PEDOT:PSS films, PEDOT:PSS/Si heterojunction diodes and photovoltaic devices have been investigated. The conductivity of PEDOT:PSS films enhanced by two orders of magnitude and all films have transparency of more than 85%. The value of ideality factor improved from 9.6 in case of pristine to 1.9 and barrier height increased from 0.57 to 0.82 eV with organic solvent. We investigated how the doping of PEDOT:PSS films with co-solvents modifies the electrical and morphological properties of the films. The conductivity value is found to increase about 1000 times compared to its pristine value with co-solvents. The conductivity of PEDOT:PSS film increased from 0.16 for pristine to 194 S/cm with co-solvents. Value of ideality factor varies from 3.1 to 2.4 and polymer photovoltaic cells fabricated with the co-solvents show higher power conversion efficiency as compared to solvents doped PEDOT:PSS films.

The use of graphene oxide as a doping material increases the conductivity of PEDOT:PSS films by three orders of magnitude and all fabricated films are highly transparent. We proposed direct synthesis of graphene nanopowder and PEDOT:PSS for the formation of conducting and transparent nanocomposite materials and the application of nanocomposite materilas demonstrated in heterojunction diodes. The conducting and transparent nanocomposite materilas can be used in optoelectronics.

In addition of this, we fabricated graphene/n-Si Schottky diodes. To understand the transport mechanism in details, temperature dependent current-voltage
characteristics are carried out, which allow us to understand the different aspects of the conduction mechanism of graphene/n-Si Schottky diodes. At room temperature the value of ideality factor and barrier height are 2.0 and 0.84 eV, respectively. It is found that barrier height increases and ideality factor decreases with increase in temperature. Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (CAFM) are used to understand the electrical properties of graphene/n-Si Schottky diodes at nanoscale. Localized variations in surface contact potential difference are studied using KPFM while localized variations in current-voltage characteristics are studied using CAFM. Most of the value of ideality factor and barrier height is found to be in the range of 2.0–4.0 and 0.50–0.70 eV for the graphene/n-Si nanoscale Schottky nanoscale contact. The analysis of the temperature dependent transport properties in combination with nanoscale electrical properties will be important for their application in various electronic devices.
हाइब्रिड कार्बनिक-अकार्बनिक सामग्री ऑप्टोलेक्ट्रॉनिकस के क्षेत्र में एक महत्वपूर्ण भूमिका निभाती है। आजकल ऑप्टोलेक्ट्रॉनिक उपकरणों के लिए पारदर्शी इलेक्ट्रोड के रूप में इलेक्ट्रॉन ऑक्साइड को बदलने के लिए पारदर्शी संचालन सामग्री की आवश्यकता है। पांडी(3,4 थियोलीनडिऔक्सिथियोफेन)- पांडी (स्टडर्नर्नलकोबेट) (पीईडीओटी: पीएसएस) ऑप्टोलेक्ट्रॉनिक उपकरणों के लिए एक पारदर्शी इलेक्ट्रोड के रूप में एक आधारणक उपयोग वार्ड है। हालांकि तेघार पीईडीओटी:पीएसएस की चालकता (1 सीमेंट/सेमी) में कम है और वह उपकरण अनुप्रयोगों के लिए एक प्रमुख सीमित कारक है। पीईडीओटी:पीएसएस की चालकता बढाना महत्वपूर्ण है। इस काम का उद्देश्य पीईडीओटी:पीएसएस के विभिन्न गुणों में बुद्धि के लिए नया और प्रभावी तरीक़े विकसित करना है, चालक और पारदर्शी पीईडीओटी:पीएसएस फिल्मों का प्रदर्शन और उपयोग इलेक्ट्रॉनिक डायोड और सॉर बैटरी में करना है।

इस शोध प्रबन्ध में, विभिन्न कार्बनिक विलायकों का प्रभाव पीईडीओटी:पीएसएस फिल्म, पीईडीओटी: पीएसएस/सिलिकाइन्टेरनिक डायोड और सॉर उपकरण में जांच की गई है। पीईडीओटी:पीएसएस की चालकता परिमाण के 100 गुणा तक बढ़ाया गया और सभी फिल्मों में 85% से अधिक की पारदर्शिता है। कार्बनिक विलायक के साथ आदर्शता कारक का गुण 9.6 मूल से सूचार कर 1.9 और बाधा की ऊंचाई 0.57 से बढ़कर 0.82 ई. बॉल्ट हुआ है। हमने जांच की तो कैसे सह-विलायक ने पीईडीओटी:पीएसएस फिल्मों में मिलकर फिल्मों के विभिन्न और रुपायक गुणों को संभोगित किया। सह-विलायक के साथ अपने मूल की तुलना में चालकता लगभग 1000 गुणा बढ़ जाती है। पीईडीओटी:पीएसएस फिल्मों की चालकता 0.16 मूल से बढ़कर 194 सीमेंट/सेमी सह-विलायक के साथ हुई है। आदर्शता कारक का गुण 3.1 से 2.4 तक परिवर्तित हुआ है और विलायक पीईडीओटी:पीएसएस फिल्मों की तुलना में सह-विलायक के साथ निर्भर बहुत सी उपकरण उत्तर शक्ति प्राप्ती से दायीं है।

डोपिंग सामग्री के रूप में ग्राफिन ऑक्साइड का उपयोग पीईडीओटी:पीएसएस फिल्मों की चालकता को परिमाण के तीन आदेश तक बढ़ाता है और सभी बनाए फिल्मों में बहुत पारदर्शी हैं। हमने संचालन ऑर पारदर्शी अतिसुष्क मिश्र सामग्री के निर्माण के लिए ग्राफिन अतिसुष्क पाउडर और पीईडीओटी:पीएसएस के प्रत्येक संहिता का प्रस्ताव दिया। चालक और पारदर्शी अतिसुष्क मिश्र सामग्री का उपयोग ऑप्टोलेक्ट्रॉनिक में किया जा सकता है।

इसके अलावा, हमने ग्राफिन/एस-सिलिकाईन्ट शटर्ड डायोड का निर्माण किया है। विषय में संचालन प्रक्रिया को समझने के लिए, तापमान पर निर्भर विवरण प्रबाह - बॉल्टा विशेषताओं को पूरा किया गया, जो हमें ग्राफिन/एस-सिलिकाईन्ट
र्शाट्की डायोड के संवाहन प्रक्रिया के विभिन्न पहलुओं को समझने की अनुमति देता है। कमरे के तापमान पर आदर्शता कारक और बाधा ऊंचाई का गुण क्षमता 2.0 और 0.84 ईं. बोल्ट है। यह पाया गया है कि तापमान में वृद्धि के साथ बाधा की ऊंचाई बढ़ जाती है और आदर्शता कारक घट जाती है। केवलन प्रीब फॉर्स माइक्रोस्कोपी (कैपीएफएम) और केंडरिंग एटामिक प्रीब माइक्रोस्कोपी (सीएएफएम) का प्रयोग अतिसूक्ष्म पैमाने पर ग्राफीन/एन-सिलिकॉन शाद्दी डायोड के विद्युत गुणों को समझने के लिए किया जाता है। सतह संपर्क संभावित अंतर में स्थानीय विद्युत अतिसूक्ष्म के पीएफएम का उपयोग करके अध्ययन किया जाता है जबकि विद्युत व्यवस्था विशेषताओं में स्थानीय विद्युत अतिसूक्ष्म के सीएएफएम का उपयोग करके अध्ययन की जाती है। अधिकांश आदर्शता कारक और बाधा की ऊंचाई के गुण, ग्राफीन/एन-सिलिकॉन अतिसूक्ष्म शाद्दी अतिसूक्ष्म संपर्क के लिए 2.0-4.0 और 0.50-0.70 ईं. बोल्ट के वेंच में पाया गया है। अतिसूक्ष्म पैमाने पर विद्युत गुणों के साथ संयोजन में तापमान पर निर्भर संवाहन गुणों का विक्षेपण विभिन्न इलेक्ट्रॉनिक उपकरणों में उनके आवेदन के लिए महत्वपूर्ण होगा।
Table of contents

Certificate i
Acknowledgements ii
Abstract iv
सार vi
Table of contents viii
List of figures xvi
List of tables xxii
List of symbols and abbreviations xxiv

1 Introduction 1

1.1 A brief overview of PEDOT:PSS 3
1.2 Mechanisms of conductivity enhancement 4
1.3 Charge transport properties of PEDOT:PSS 6
1.4 Current transport mechanisms 7
1.5 Photovoltaic characteristics 9
1.6 Graphene based nanocomposites 11
1.7 Graphene based Schottky diodes 12
1.8 Electrical transport at nanoscale 13
1.9 Objectives and motivation of the present work 14
1.10 Outline of the thesis 15
1.11 References 17

2 Experimental and characterization techniques 21

2.1 Sample cleaning 23
2.2 Deposition of PEDOT:PSS films 23
2.3 Characterization techniques 24

2.3.1 Thickness measurements 24
2.3.2 Conductivity measurements 24
2.3.3 Raman measurements 25
2.3.4 Transmittance measurements 26
2.3.5 Current-voltage and capacitance-voltage measurements 27
2.3.6 Photovoltaic measurements 28
2.3.7 Atomic force microscopy 29

2.3.7.1 Kelvin probe force microscopy 30
2.3.7.2 Conductive atomic force microscopy 31

2.4 References 31

3 Investigation of the effect of organic solvents on the properties of PEDOT:PSS/Si heterojunction diodes 33

3.1 Effect of dimethyl sulfoxide on PEDOT:PSS/n-Si heterojunction diodes 35

3.1.1 Introduction 35
3.1.2 Experimental 35
3.1.3 Results and discussion 36

3.1.3.1 Thickness and morphology 36
<table>
<thead>
<tr>
<th>3.1.3.2 Transmittance</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3.3 Temperature dependence of the resistivity</td>
<td>38</td>
</tr>
<tr>
<td>3.1.3.4 Raman spectra</td>
<td>40</td>
</tr>
<tr>
<td>3.1.3.5 Electrical characteristics of PEDOT:PSS/(n)-Si heterojunction diodes</td>
<td>41</td>
</tr>
</tbody>
</table>

3.2 Effect of dimethyl sulfoxide on PEDOT:PSS/\(p\)-Si heterojunction diodes

<table>
<thead>
<tr>
<th>3.2.1 Results and discussion</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1.1 Thickness and morphology</td>
<td>43</td>
</tr>
<tr>
<td>3.2.1.2 Conductivity</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1.3 Raman spectra</td>
<td>45</td>
</tr>
<tr>
<td>3.2.1.4 Surface potential and work function</td>
<td>45</td>
</tr>
<tr>
<td>3.2.1.5 Electrical characteristics of PEDOT:PSS/(p)-Si heterojunction diodes</td>
<td>47</td>
</tr>
</tbody>
</table>

3.3 Effect of organic solvents on PEDOT:PSS/\(n\)-Si heterojunction diodes

<table>
<thead>
<tr>
<th>3.3.1 Experimental</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2 Results and discussion</td>
<td>50</td>
</tr>
<tr>
<td>3.3.2.1 Thickness and morphology</td>
<td>50</td>
</tr>
<tr>
<td>3.3.2.2 Surface potential and work function</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2.3 Conductivity</td>
<td>52</td>
</tr>
<tr>
<td>3.3.2.4 Raman spectra</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2.5 Transmittance spectra</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2.6 Electrical characteristics of PEDOT:PSS/(n)-Si heterojunction diodes</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2.7 Photovoltaic characteristics of PEDOT:PSS/(n)-Si solar cell</td>
<td>58</td>
</tr>
</tbody>
</table>
3.3.3 Energy band diagram

3.4 Effect of organic solvents on PEDOT:PSS/p-Si heterojunction diodes

3.4.1 Results and discussion

3.4.1.1 Thickness and morphology

3.4.1.2 Surface potential and work function

3.4.1.3 Raman spectra

3.4.1.4 Electrical characteristics of PEDOT:PSS/p-Si heterojunction diodes
 3.4.1.4.1 I-V Characteristics
 3.4.1.4.2 C-V Characteristics

3.4.2 Energy band diagram

3.5 Conclusions

3.6 References

4 Fabrication and electrical characterization of PEDOT:PSS/n-Si heterojunction diodes with co-solvents

4.1 Introduction

4.2 Experimental

4.3 Results and discussion

 4.3.1 Thickness, morphology and surface potential

 4.3.2 Conductivity

 4.3.3 Transmittance spectra

 4.3.4 Raman spectra

 4.3.5 Electrical characteristics of PEDOT:PSS/n-Si heterojunction diodes
4.3.6 Photovoltaic characteristics of PEDOT:PSS/n-Si solar cell

4.4 Conclusions

4.5 References

5 Study of the effect of graphene oxide on PEDOT:PSS films and synthesis of graphene-PEDOT:PSS nanocomposites

5.1 Effect of graphene oxide on PEDOT:PSS films

5.1.1 Introduction

5.1.2 Experimental

5.1.3 Results and discussion

5.1.3.1 Thickness and morphology

5.1.3.2 Conductivity

5.1.3.3 Raman spectra

5.1.3.4 Transmittance spectra

5.1.3.5 Work function

5.1.3.6 Electrical characteristics of GO-PEDOT:PSS/n-Si heterojunction diodes

5.1.4 Energy band diagram

5.1.5 Conclusions

5.2 Synthesis of Graphene-PEDOT:PSS nanocomposites

5.2.1 Introduction

5.2.2 Experimental

5.2.3 Results and discussion

5.2.3.1 Raman spectrum of graphene
5.2.3.2 Thickness and morphology 101

5.2.3.3 Conductivity 102

5.2.3.4 Transmittance spectra 104

5.2.3.5 Raman spectra 105

5.2.3.6 Work function 106

5.2.3.7 Electrical characteristics of graphene-PEDOT:PSS/n-Si heterojunction diodes 107

5.2.4. Conclusions 108

5.3 References 109

6 Temperature dependent electrical characterization and nanoscale electrical characterization of graphene/n-Si Schottky diodes using scanning probe microscopy 113

6.1 Introduction 115

6.2 Experimental 116

6.3 Results and discussion 117

6.3.1 Raman spectrum 117

6.3.2 Surface potential and work function 118

6.3.3 Temperature dependent electrical characteristics of graphene/n-Si Schottky diodes 119

6.3.4 Nanoscale electrical characteristics of graphene/n-Si Schottky diodes 126

6.4 Energy band diagram 130

6.5 Conclusions 131

6.6 References 131
7 Summary and future perspective

7.1 Summary 137

7.2 Future perspective 139

<table>
<thead>
<tr>
<th>Publications in International Journals</th>
<th>141</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentations in International/National Conferences</td>
<td>142</td>
</tr>
<tr>
<td>Bio-data</td>
<td>145</td>
</tr>
</tbody>
</table>
List of figures

Figure 1.1: Schematic representation of the morphology of PEDOT:PSS and its structure. Left: the top view of the morphology of a thin film of PEDOT:PSS particles, surrounded by a thin PSS rich surface layer. PEDOT chains are displayed as short bars. Right: chemical structure of the species present in the film, reproduced from [13].

Figure 1.2: Schematic representation of conductivity enhancement mechanism of PEDOT:PSS with GO.

Figure 1.3: Current transport mechanism in a Schottky diode: (1) represents thermionic emission (TE) (2) represents tunneling, (3) represents recombination in space charge region, and (4) represents recombination in neutral region [33].

Figure 1.4: The typical current-voltage characteristics for dark and light current in a solar cell, reproduced from [43].

Figure 1.5: Band alignment of ideal graphene/semiconductor junction at (a) zero bias, (b) forward bias, and (c) reverse bias [60].

Figure 2.1: Stylus profilometer.

Figure 2.2: Variable temperature Hall effect measurement system.

Figure 2.3: Horiba LabRAM HR Raman spectrometer.

Figure 2.4: UV-visible spectrophotometer.

Figure 2.5: I-V and C-V measurement set up.

Figure 2.6: Oriel Sol3A Class AAA Solar Simulator.

Figure 2.7: Bruker’s Dimension ICON AFM.

Figure 3.1.1: Schematic of the device structure.

Figure 3.1.2: AFM images of PEDOT:PSS films with (a) pristine, (b) 1%, (c) 3%, (d) 5%, and (e) 8% DMSO.

Figure 3.1.3: Transmittance spectra of PEDOT:PSS films with 0-8 vol.% DMSO.

Figure 3.1.4: (a) Temperature dependence resistivity plots of PEDOT:PSS films
with 0-8 vol.% DMSO, and (b) variation of resistivity of PEDOT:PSS films with $T^{-0.5}$ for 0-8 vol.% DMSO.

Figure 3.1.5: Raman spectra of PEDOT:PSS films with 0-8 vol.% DMSO.

Figure 3.1.6: (a) Semi-log forward and reverse $I-V$ characteristics, and (b) apparent barrier height and ideality factor vs. DMSO concentration plots (calculated from the forward bias $I-V$ characteristics) for Au/PEDOT:PSS/n-Si/In-Ga heterojunction diodes with 0-8 vol.% DMSO.

Figure 3.2.1: AFM images of PEDOT:PSS films on p-Si with (a) pristine, (b) 1%, (c) 3%, (d) 5%, and (e) 8% DMSO.

Figure 3.2.2: Variation in conductivity of PEDOT:PSS films with DMSO.

Figure 3.2.3: Raman spectra of PEDOT:PSS films as a function of DMSO doping concentration values.

Figure 3.2.4: Potential images of PEDOT:PSS films with (a) pristine, (b) 1%, (c) 3%, (d) 5%, and (e) 8% DMSO.

Figure 3.2.5: Forward and reverse current-voltage ($I-V$) characteristics of Au/PEDOT:PSS/p-Si/In-Ga heterojunction diodes as a function of DMSO doping concentration values.

Figure 3.3.1: Height and respective line scan of (a) bare, (b) DMF, (c) NMP, (d) DMSO, (e) EG, and (f) MeOH organic solvents doped PEDOT:PSS films.

Figure 3.3.2: Potential and respective line scan of (a) bare, (b) DMF, (c) NMP, (d) DMSO, (e) EG, and (f) MeOH organic solvents doped PEDOT:PSS films.

Figure 3.3.3: CAFM images of (a) bare, (b) DMF, (c) NMP, (d) DMSO, (e) EG, and (f) MeOH organic solvents doped PEDOT:PSS films.

Figure 3.3.4: Raman spectra of organic solvents doped PEDOT:PSS films.

Figure 3.3.5: Transmission spectra of organic solvents doped PEDOT:PSS films.

Figure 3.3.6: Semi log forward and reverse $I-V$ characteristics for Au/PEDOT:PSS/n-Si/In-Ga heterojunction diodes doped with organic solvents.

Figure 3.3.7: Forward bias log $I-log V$ characteristics for Au/PEDOT:PSS/n-Si/In-Ga heterojunction diodes doped with organic solvents.
Si/In-Ga heterojunction diodes doped with organic solvents.

Figure 3.3.8: J-V characteristics of bare and organic solvents doped PEDOT:PSS/n-Si solar cell under AM 1.5 illumination.

Figure 3.3.9: Energy band diagram of PEDOT:PSS/n-Si heterojunction diode.

Figure 3.4.1: AFM images of (a) Pristine, (b) NMP, (c) DMF, (d) DMSO, (e) EG, and (f) MeOH organic solvents modified PEDOT:PSS films.

Figure 3.4.2: Potential images of (a) Pristine, (b) NMP, (c) DMF, (d) DMSO, (e) EG, and (f) MeOH organic solvents modified PEDOT:PSS films.

Figure 3.4.3: Raman spectra of organic solvents modified PEDOT:PSS films.

Figure 3.4.4: Forward and reverse I-V characteristics of Au/PEDOT:PSS/p-Si/In-Ga heterojunction diodes using organic solvents modified PEDOT:PSS films.

Figure 3.4.5: Forward bias log I-log V characteristics of Au/PEDOT:PSS/p-Si/In-Ga heterojunction diodes using organic solvents modified PEDOT:PSS films.

Figure 3.4.6: $1/C^2$-V curve of Au/PEDOT:PSS/p-Si/In-Ga heterojunction diodes using organic solvents modified PEDOT:PSS films.

Figure 3.4.7: Energy band diagram of PEDOT:PSS/p-Si heterojunction diode.

Figure 4.1: AFM images of PEDOT:PSS films modified with (a) 0% NMP 1% MeOH, (b) 0.1% NMP 1% MeOH, (c) 0.3% NMP 1%MeOH, (d) 0.5% NMP 1% MeOH, (e) 0.8% NMP 1%MeOH, and (f) 0% MeOH 0.5% NMP.

Figure 4.2: Potential images of PEDOT:PSS films modified with (a) 0% NMP 1% MeOH, (b) 0.1% NMP 1% MeOH, (c) 0.3% NMP 1%MeOH, (d) 0.5% NMP 1% MeOH, (e) 0.8% NMP 1%MeOH, and (f) 0% MeOH 0.5% NMP.

Figure 4.3: Transmission spectra of co-solvents modified PEDOT:PSS films.

Figure 4.4: Raman spectra of co-solvents modified PEDOT:PSS films.

Figure 4.5: Forward and reverse I-V characteristics for PEDOT:PSS/n-Si
heterojunction diodes modified with co-solvents.

Figure 4.6: Forward bias log \(I \)-log \(V \) characteristics for PEDOT:PSS/\(n \)-Si heterojunction diodes doped modified with co-solvents.

Figure 4.7: \(J-V \) characteristics of co-solvents modified PEDOT:PSS/\(n \)-Si solar cell under AM 1.5 illumination.

Figure 5.1.1: AFM images of PEDOT:PSS films with (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.08, and (e) 0.10 vol.% doping concentration of GO.

Figure 5.1.2: Variation in electrical conductivity of PEDOT:PSS films with doping concentration of GO varying from 0 to 0.10 vol.%.

Figure 5.1.3: Raman spectra of PEDOT:PSS films with doping concentration of GO varying from 0 to 0.10 vol.%. Inset shows Raman spectra of GO.

Figure 5.1.4: Transmittance spectra of PEDOT:PSS films with doping concentration of GO varying from 0 to 0.10 vol.%.

Figure 5.1.5: Surface potential images of PEDOT:PSS films with (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.08, and (e) 0.10 vol.% doping concentration of GO.

Figure 5.1.6: Forward and reverse current-voltage \((I-V) \) characteristics of PEDOT:PSS/\(n \)-Si heterojunction diode with doping concentration of GO varying from 0 to 0.10 vol.%.

Figure 5.1.7: Energy band diagram of PEDOT:PSS/\(n \)-Si heterojunction diode with 0.05 vol.% GO.

Figure 5.2.1: Raman spectrum of graphene film.

Figure 5.2.2: AFM image of graphene- PEDOT:PSS nanocomposite films.

Figure 5.2.3: (a) Temperature dependence resistivity plots of graphene-PEDOT:PSS nanocomposite films, and (b) variation of resistivity of graphene-PEDOT:PSS nanocomposite films with \(T^{-1/2} \).

Figure 5.2.4: (a) Transmittance spectra of graphene-PEDOT:PSS nanocomposite films. (b) The variation of transmittance value of graphene-PEDOT:PSS nanocomposite films with graphene concentration (in mg) for optical wavelength
of 550 nm.

Figure 5.2.5: Raman spectra of graphene-PEDOT:PSS nanocomposite films. 106

Figure 5.2.6: Forward and reverse $I-V$ characteristics of graphene-PEDOT:PSS nanocomposite/n-Si heterojunction diodes. 107

Figure 6.1: Raman spectrum of graphene on SiO$_2$/Si substrate. 118

Figure 6.2: (a) Schematic representation of KPFM measurements (figure not to scale), and (b) & (c) show surface potential image of HOPG and graphene, respectively. 119

Figure 6.3: (a) Semi-log forward and reverse $I-V$ characteristics, and (b) apparent barrier height and ideality factor vs. temperature plot for graphene/n-Si Schottky diode. 120

Figure 6.4: Barrier height variations with temperature obtained by using thermionic field emission. 121

Figure 6.5: Comparison of measured $I-V$ plots to TE model based calculated $I-V$ plots at low temperatures. 122

Figure 6.6: Comparison of measured $I-V$ plots to TFE model based calculated $I-V$ plots at low temperatures. 123

Figure 6.7: Room temperature $I-V$ characteristics of graphene/n-Si Schottky diode. 125

Figure 6.8: (a) Semi-log forward and reverse $I-V$ characteristics, and (b) apparent barrier height and ideality factor vs. temperature plot for graphene/n-Si Schottky diode. 125

Figure 6.9: (a) Schematic representation of CAFM measurements, and (b) current image of graphene. 126

Figure 6.10: CAFM $I-V$ characteristics of graphene/n-Si Schottky diode. 127

Figure 6.11: Energy band diagram of graphene/n-Si Schottky diode. 130
List of tables

Table 3.2.1: Calculated PEDOT:PSS/p-Si heterojunction diode parameters as a function of DMSO doping concentration.

Table 3.3.1: Photovoltaic properties of organic solvents doped PEDOT:PSS/n-Si solar cell.

Table 3.4.1: Calculated diode parameters of organic solvents modified PEDOT:PSS/p-Si heterojunction diode.

Table 4.1: Different properties of co-solvent modified PEDOT:PSS films.

Table 4.2: Calculated diode parameters of co-solvents modified PEDOT:PSS/n-Si heterojunction diode.

Table 4.3: Photovoltaic properties of co-solvents modified PEDOT:PSS/n-Si solar cell.

Table 5.1.1: Calculated PEDOT:PSS/n-Si heterojunction diode parameters as a function of GO concentration.

Table 6.1: Various parameters for calculating A_{eff} between Pt-Ir and graphene surface.
List of symbols and abbreviations

PEDOT:PSS Poly (3,4 ethylenedioxythiophene):poly (styrenesulfonate)

PVDF Polyvinylidene fluoride

Si Silicon

SiO$_2$ Silicon dioxide

Al Aluminum

Au Gold

In-Ga Indium-Gallium

UV-Vis-NIR Ultraviolet-visible near infra-red spectroscopy

STM Scanning tunneling microscopy

SPM Scanning probe microscopy

AFM Atomic force microscopy

KPFM Kelvin probe force microscopy

CAFM Conducting atomic force microscopy

NMP n-methyl-2-pyrrolidone

DMF Dimethyl formamide

DMSO Dimethyl sulfoxide

EG Ethylene glycol

MeOH Methanol

DI Deionized

rpm Rotation per minute

VRH Variable range hopping

TE Thermionic emission

TFE Thermionic field emission

RMS Root mean square

RT Room temperature
CPD Contact potential difference

SCLC Space charge limited current

TCLC Trap charge limited current

HOPG Highly oriented pyrolytic graphite

BP Boiling point

DC Dielectric constant

Ar Argon

PCE Power conversion efficiency

CVD Chemical vapor deposition

PMMA Poly (methyl methacrylate)

GO Graphene oxide

I-V Current-voltage

I-V-T Temperature dependent current-voltage

C-V Capacitance-voltage

J-V Current density-voltage

E_C Conduction band edge

E_V Valance band edge

q Elementary charge

N_a Acceptor concentration

V_{bi} Built-in-potential

\varepsilon_0 Permittivity of free space

\varepsilon_s Permittivity of semiconductor

n Ideality factor

A Area

T Temperature

A^{}** Richardson coefficient

k Boltzmann constant.

\phi_{bi} Barrier height

Pt-Ir Platinum-Iridium
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-Cr</td>
<td>Cobalt-chromium</td>
</tr>
<tr>
<td>E_F</td>
<td>Fermi level</td>
</tr>
<tr>
<td>E_{vac}</td>
<td>Vacuum level</td>
</tr>
<tr>
<td>ϕ</td>
<td>Work function</td>
</tr>
<tr>
<td>ϕ_G</td>
<td>Work function of graphene</td>
</tr>
<tr>
<td>ϕ_{tip}</td>
<td>Work function of conducting tip</td>
</tr>
<tr>
<td>ϕ_{sample}</td>
<td>Work function of sample</td>
</tr>
<tr>
<td>ϕ_p</td>
<td>Work function of PEDOT:PSS</td>
</tr>
<tr>
<td>χ</td>
<td>Electron affinity of semiconductor</td>
</tr>
<tr>
<td>ϕ_m</td>
<td>Work function of metal</td>
</tr>
<tr>
<td>N_C</td>
<td>Effective density of states in the conduction band</td>
</tr>
<tr>
<td>N_D</td>
<td>Donor concentration</td>
</tr>
<tr>
<td>FF</td>
<td>Fill factor</td>
</tr>
<tr>
<td>J_{sc}</td>
<td>Current density</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>Open circuit voltage</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>δ</td>
<td>Zero bias depletion width</td>
</tr>
<tr>
<td>I_{2D}</td>
<td>Raman intensity of 2D peak in graphene</td>
</tr>
<tr>
<td>I_G</td>
<td>Raman intensity of G peak in graphene</td>
</tr>
<tr>
<td>P</td>
<td>Normal load</td>
</tr>
<tr>
<td>R</td>
<td>Radius of curvature</td>
</tr>
<tr>
<td>E^*</td>
<td>Contact modulus</td>
</tr>
<tr>
<td>v</td>
<td>Poisson's ratio</td>
</tr>
<tr>
<td>E</td>
<td>Young's modulus</td>
</tr>
<tr>
<td>A_{eff}</td>
<td>Effective area</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
</tr>
</tbody>
</table>