VULNERABILITY ASSESSMENT OF RURAL HOUSES DUE TO CYCLONIC WIND

PRADEEP K. GOYAL

CENTRE FOR RURAL DEVELOPMENT & TECHNOLOGY
INDIAN INSTITUTE OF TECHNOLOGY, DELHI
OCTOBER, 2009
VULNERABILITY ASSESSMENT OF RURAL HOUSES DUE TO CYCLONIC WIND

By
PRADEEP K. GOYAL
Centre for Rural Development & Technology

Submitted
in fulfillment of the requirements of the degree of
DOCTOR OF PHILOSOPHY

to the

INDIAN INSTITUTE OF TECHNOLOGY, DELHI
Hauz Khas, New Delhi-110016, India
October, 2009
Dedicated to Lord Shiva
Certificate

This is to certify that the thesis entitled, "Vulnerability Assessment of Rural Houses due to Cyclonic Wind", being submitted by Mr. Pradeep Kumar Goyal, to the Indian Institute of Technology, Delhi, for the award of ‘DOCTOR OF PHILOSOPHY’ is a record of the bonafide research work carried out by him under our supervision and guidance. He has fulfilled the requirements for submission of this thesis, which to the best of our knowledge has reached the requisite standard.

The material contained in the thesis has not been submitted in part or full to any other University or Institute for the award of any degree or diploma.

(Prof. T. K. Datta) (Dr. V. K. Vijay)
Professor Associate Professor
Department of Civil Engineering CRDT
Indian Institute of Technology Indian Institute of Technology
New Delhi – 110016, India New Delhi – 110016, India

October, 2009
Acknowledgements

I offer respectful obeisance unto the lotus feet of Prof. T.K. Datta and Dr. V.K. Vijay for all their help and support in completing this thesis. It was indeed my privilege to work under the supervision of Prof. T.K. Datta. I feel indebted to him for not only teaching me each and every aspect of the art of doing research, but also other important aspects of life. His kindness and patience has really given me courage and assurance, and his friendliness has given me hope during the difficult times I faced. My gratitude knows no bounds for Dr. V.K. Vijay for his valuable guidance and encouragement, without which it would have been very difficult to move ahead with my work.

I would like to express my gratitude to Dr. M. Raisinghani, Prof. K.G. Sharma, Dr. (Mrs.) S. Karunes, Prof. Rajendra Prasad, Dr. M.K. Shrimali, Dr. B.R. Chahar, Dr. M.C. Govil, Dr. Sudhir Kumar for their sincere encouragement and continuous support. I also expressed my gratitude to Dr. Purnamita Dasgupta, IEG, New Delhi for indirect support extended to me during my research.

I would also like to thank Sunil Bansal, T.C. Gupta, Deepak Kumar, Deeptesh Das, Umesh Pendharkar, M.K. Bhardwaj, Sandeep, Mahendra, Gitanjali, Prakash, Ranveer, Ashish and my other friends who lent their helping hands in every possible way and whenever needed.

I am grateful to Govt. Engineering College, Ajmer for allowing me to pursue this study. My colleagues in the Institute, D. Mathur, and Rohit Mishra deserve special thanks for giving me support during this study.

I thank Dr. M.M. Rao, Mr. Amit Bundela, Mr. N.R. Gehlot, Y.N. Sharma and Praveen Chauhan for the assistance they provided to me.

I wish to express my deepest gratitude to my family for their blessings, affection and all their prayers, without which I would not have been able to endure hard times and carry on. I offer my sincere thanks to my parents in-law for all their blessings and support.

My words fail to express my gratitude and appreciation to my wife, Anju, for all that she silently endured during the difficult times, and the way she always supported me and stood by my side. I also wish to thank my son, Bhavya, for his love, affection and unending patience during the period of this work.

(Pradeep K. Goyal)
Abstract

All rural houses in the coastal regions of developing and underdeveloped countries are prone to severe damages due to cyclones. Very few studies in estimating the vulnerability of such houses to cyclonic wind have been reported in the literature. The main reason for this lack of study is the scarcity of the recorded data on the cyclonic wind speeds and consequent damage scenarios. The reported literature on the subject dealt with the procedure for the vulnerability assessment of low cost and low rise buildings having clearly identified components. Unfortunately, in developing countries like India, the rural houses are mostly of non-engineered type in which clear demarcation of different components of the house is not possible. Further, there is no systematic recorded data on the damage scenarios and cyclonic wind speeds. The present work is motivated to develop some methodologies which can be used to assess the vulnerability of rural houses to cyclonic wind speed in countries like India and also to provide cyclonic risk assessment of coastal regions. For this purpose, a number of studies have been presented in the thesis. They include (i) cyclonic microzonation of coastal regions and (ii) three different procedures for assessing the vulnerability of rural houses to cyclonic wind.

The method for cyclonic microzonation of coastal regions uses the recorded cyclonic tracks rather than the wind speeds which are not generally available. From the cyclonic tracks, the wind speeds are calculated for a particular site and cyclonic hazard curve for the site is developed using probabilistic approach. The region to be microzoned is divided into a number of grids. The centres of the grids are taken as the sites. Surrounding a site, a circle of specified radius is constructed for obtaining the wind speeds at the site due to cyclone tracks passing through the circle. Microzonation maps are presented in terms of the design wind speed of specified return periods.
examples, the states of Andhra Pradesh and Orissa are considered and have been microzoned for cyclonic wind speed.

For the vulnerability assessment of rural houses, the first procedure is developed for finding the overall vulnerability of a cluster of rural houses using direct approach. In this approach, different observed damage states quantified as minor, moderate and extreme damages are defined rather than component damages by defining the probability of failure of different damage states in terms of failure velocities, n^{th} percentile fragility curve showing the overall probability of failure to cyclonic wind speed is then obtained by integrating the distribution of the cyclonic wind speed with the failure distribution.

The second procedure uses component based approach in which the failures of different components of the houses are described in terms of probability distributions of wind velocity. The method obtains different damage states by combining different possible damage scenarios and, accordingly, a damage probability matrix is determined. The matrix shows the joint probability of the damage states for different wind speeds. By using convolution technique, the vulnerability curves showing the annual mean damage with mean yearly maximum wind speed are obtained for a cluster of different types of houses.

The third procedure modifies the second approach by including wind directionality effect. The effect of wind direction on the damage of structures is difficult to include in the analysis because of the non-availability of enough data regarding the failure of the components of the houses for directional wind. As a result, some simplified methods have been developed. These methods are extended to modify the second approach of vulnerability assessment. The wind directionality effect is incorporated in two different ways. In the first case, an equivalent directional effect is used to modify the component failure velocities. In the second case, component failure velocities are
converted into direction dependent failure velocities by finding a wind directional factor for each direction. For convolution, sixteen wind directions are considered, and the joint probability distribution between wind speed and direction is used. The resulting vulnerability curve is, thus, modified due to the directional effect.

The above procedures are applied to find the vulnerability of a cluster of hundred rural houses in India. The effects of important parameters like ratio of non-engineered to semi-engineered houses, distributions of wind speed and distributions of failure velocity of damage states, coefficients of variation of failure velocity and the wind speed, etc. on the annual mean damage or the probability of failure are investigated.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERTIFICATE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1-8</td>
</tr>
<tr>
<td>1.1 GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.2 NEED FOR THE PRESENT WORK</td>
<td>5</td>
</tr>
<tr>
<td>1.3 OBJECTIVES OF THE STUDY</td>
<td>6</td>
</tr>
<tr>
<td>1.4 ORGANIZATION OF THE THESIS</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td>9-34</td>
</tr>
<tr>
<td>2.1 INTRODUCTORY REMARKS</td>
<td>9</td>
</tr>
<tr>
<td>2.2 HAZARD ANALYSIS AND MICROZONATION</td>
<td>9</td>
</tr>
<tr>
<td>2.3 PROBABILISTIC DESCRIPTION OF CYCLONIC WIND SPEED</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1 Directional Behaviour of Wind Speed</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2 Joint Distribution of Wind Speed and Direction</td>
<td>18</td>
</tr>
<tr>
<td>2.4 VULNERABILITY/DAMAGE ASSESSMENT</td>
<td>19</td>
</tr>
<tr>
<td>2.5 CLASSIFICATION OF BUILDINGS IN INDIA</td>
<td>26</td>
</tr>
<tr>
<td>2.6 TYPES OF BUILDING FAILURE DUE TO CYCLONE</td>
<td>27</td>
</tr>
</tbody>
</table>
CHAPTER 3: CYCLONIC MICROZONATION

3.1 INTRODUCTION

3.2 METHODOLOGY

3.2.1 Central Pressure Difference

3.2.2 Radius of the Maximum Wind Speed

3.2.3 Translation Velocity

3.2.4 Heading Direction

3.2.5 Track Angle with Site

3.2.6 Analysis Steps

3.2.7 Artificial Generation of Distribution of Velocity at a Site using the Published Distribution of the Cyclone Key Parameters

3.2.8 Proposed Distribution of Cyclone Key Parameters for East Cost of Indian Region

3.3 NUMERICAL STUDY

3.3.1 Microzonation of Andhra Pradesh

3.3.2 Microzonation of Orissa

3.3.3 Proposed Distribution of Cyclone Key Parameters for Indian Coastal Region
CHAPTER 4: PRELIMINARY ESTIMATE OF VULNERABILITY OF RURAL HOUSES USING DIRECT APPROACH

4.1 INTRODUCTION

4.2 METHODOLOGY
 4.2.1 Distribution of Different Types of Houses
 4.2.2 Determination of Probability of Failure of Each Damage State
 4.2.3 Evaluation of Fragility Curves for Different Damage States

4.3 NUMERICAL STUDY

4.4 CONCLUSIONS

CHAPTER 5: VULNERABILITY OF RURAL HOUSES USING DAMAGE PROBABILITY MATRIX

5.1 INTRODUCTION

5.2 THEORY
 5.2.1 Procedure for the Evaluation of Damage Probability Matrix
 5.2.2 Basic Damage States and Combination of Damage States
 5.2.3 Calculation of Damage Probability Matrices
CHAPTER 6: DAMAGE ESTIMATE OF RURAL HOUSES

CONSIDERING WIND DIRECTIONAL EFFECT

6.1 INTRODUCTION

6.2 METHODS RELATED TO WIND DIRECTIONAL EFFECTS
 6.2.1 Non-Directional Method
 6.2.2 Directional Method

6.3 DAMAGE ESTIMATION

6.4 NUMERICAL STUDY
 6.4.1 Directional Effect using Average Maximum Directionality Factor
 6.4.2 Effect of Wind Direction on Annual Mean Damage using Directionality Factor for Each Direction

6.5 CONCLUSIONS

TABLES

FIGURES

APPENDIX