MASS TRANSFER FROM FALLING DROPS.

A Thesis submitted for the Degree of Doctor of Philosophy
Indian Institute of Technology, Delhi.

by C.L. PRITCHARD, M.A.
DEPARTMENT OF CHEMICAL ENGINEERING, IIT DELHI NEW DELHI-23.

1st SEPTEMBER 1967.
ACKNOWLEDGEMENTS

I wish to thank Dr. P.N. Sehgal, Dr. S.K. Biswas and Prof. F. Rumford for their sustained interest and encouragement in this work. I am grateful to Mrs. Jane Buckle for typing the draft, to Mr. H.C. Bhatia for typing the manuscript, and to Mr. R.T. Russell for putting the resources of the Workshops at my disposal.

The laboratory and drawing office staff of the Chemical Engineering Department have been unfailingly helpful. Mr. Jodh Singh provided valuable assistance in the photographic work.

The Ministry of Education, Government of India, New Delhi, supported this work through the award of a Commonwealth Fellowship. The assistance of the British Council is also acknowledged.
CONTENTS

Index to Plates and Figures

Acknowledgements

Chapters: page

1. Introduction 1
   Predicting evaporation from liquid droplets. Operating
   variables.
   Scope of the present work.

2. The Penetration theory of Mass Transfer 4
   Development of Penetration theory from earlier
   theories and models. Comparison of the predictions
   of various theories, and means of distinguishing the
   mechanism controlling mass transfer. Systems to
   which the Penetration theory is known to apply.

3. The Evaporation of a Freely Falling Drop 9
   Development of a model for the evaporation of a
   falling drop. Survey of available experimental methods
   and choice of operating variables. Description of
   experiments and summary of results. Significance of
   results and of the choice between the available models
   for mass transfer.

4. The Effect of Surface-Active Agents 21
   Theories of the effect of surfactants on mass
   transfer. Development of a theory to predict the
   effect of surfactants on the evaporation of liquid
   drops. Prediction of change in evaporation from
   liquid drops when surfactants are present. Experi-
   mental results and conclusions.

5. The Evaporation of Sprays 31
   Complicating factors in spray systems. Applicability
   of equations already derived for single drops. Experi-
   mental variables and measurement techniques. Experimen-
   tal arrangement and procedure. Model to predict change
   in Sauter mean diameter. Model to predict Sherwood
   number. Comparison of results with these predictions.
   Effect of evaporation on saturation of air. Overall
   mass balances. Conclusions.

6. Conclusion 49
   Summary of results and limitations of the present
   work. Suggestions for further research.
Appendix.

1. Analytical and Numerical Solutions to the Equations of Motion and Evaporation

   Derivation of analytic solutions in the Low, intermediate and high Reynolds' number ranges, for simplified conditions of zero gravity or zero drag. Derivation of parametric evaporation equations. Effect of fluid properties on drag coefficient and hence on path length for given amount of evaporation, with sample calculations.

2. Specimen data and calculations for single drop systems.

3. Tables of results for single drop systems with surfactants.

4. Specimen data and calculations for spray systems

   Data for spray at 0.98 ccs/sec: drop counts, temperatures and humidities.

5. Tables of results for spray systems.

   Air velocities. Mass-mean and Sauter-mean diameters.

   Predictions of $\Delta d'$ and Sherwood number.

6. Secondary Calculations:

   A Critical drop sizes for pure liquids
   B Temperature relaxation of a drop in an airstream
   C Effect of turbulence on the evaporation rate
   D Vapour concentration in the dropping tube
   E Wall effect on drop velocity.
   F Effect of the velocity gradient in the cocurrent airstream
   G Effect of internal circulation on the drag coefficient.
   H Effect of surface-active materials.
(Appendix 6 cont'd).

I  Effect of radial vapour outflow (Stefan flow)  94
J  Effect of drop oscillation on rate of evaporation.  95
K  Interaction between external flow and surfactant effect.  96
L  Mass transfer in forward and wake regions  97
M  Effect of velocity on separation angle  98
N  Temperature relaxation times for drops in sprays.  99
O  Radial vapour outflow in sprays.  100
P  Effect of proximity of drops in the spray  100
Q  Effect of turbulence on spray evaporation  102
R  Effect of internal pressure on vapour pressure  102
T  Analysis of variance of experimental data  104
   (1) Test of Penetration theory
   (2) Test of Amended theory
S  Mass transfer dependence on diffusivity  103

7. Mass transfer in Wakes.  111
   Experimental observations on local mass transfer rates in the wake of solid spheres in fluid streams. Method of assigning mass transfer to forward or wake area. Comparison of predictions of various flow models with experimental results. Prediction of mass transfer from flow conditions.

Nomenclature  121
References  126