Chemistry of Intercalated Vanadyl(IV, V) Phosphates: Synthesis, Structure and Magnetic Properties

by

P. AYYAPPAN
Department of Chemistry

Submitted
in fulfilment of the requirements of the degree of Doctor of Philosophy

to the

Indian Institute of Technology, Delhi

September, 1999
CERTIFICATE

This is to certify that the thesis entitled "Chemistry of vanadyl (IV, V) phosphates: Synthesis, structure and magnetic properties" being submitted by Mr. P. Ayyappan to the Indian Institute of Technology, New Delhi for the award of the degree of Doctor of Philosophy in Chemistry, is a record of bonafide research work carried out by him. Mr. P. Ayyappan has worked under my guidance and supervision, and has fulfilled the requirements for the submission of this thesis which, to my knowledge, has reached requisite standard.

The results contained in the dissertation have not been submitted, in part or in full, to any other university or institute for the award of any degree or diploma.

September, 1999

(A. RAMANAN)
Associate Professor
Department of Chemistry
Indian Institute of Technology
New Delhi 110016
Dedicated to

my mother, brothers and sisters
ACKNOWLEDGEMENTS

I take pleasure in recording my sincere thanks to Dr. A. Ramanan, Associate Professor, Department of Chemistry, Indian Institute of Technology, New Delhi, for his inspiring guidance and constant encouragement throughout the course of this investigation.

My sincere thanks are due to Prof M.N. Gupta, Head of chemistry Department, for providing me necessary facilities in the department. Thanks are also due to all the faculty members (especially to Dr. R. Varadarajan, Dr. Nalin Pant and Dr. N.D. Kurur for valuable discussion) and supporting staff of the department for their kind help and cooperation.

My grateful thanks are due to Dr. C.C. Torardi, Dupont company for providing single crystal structures, USA, Dr. J.J. Vittal, National University of Singapore, Singapore for single crystal data collection on enVPO & VO(H₃PO₄), Dr. Allan Pring, South Australia Museum, Adelaide, Australia for help with X-ray powder diffraction and EDAX analysis, Dr. K.V. Ramamujachary and Mark Higgins, Rowan college, New Jersy, USA and Dr. N.Y. Vasanthacharya, IISc, Bangalore, for low temperature magnetic susceptibility measurements, Dr. Xian Ben Wang, National University of Singapore, Singapore for recording Raman spectra, Dr. P.A. Joy, National Chemical Laboratory, Pune, for help with TG analysis and Dr. Yves Piffard, UMR CNRS-Universite de Nantes, France for teaching me the intricacies of solving single crystal structures.

I am really thankful to BRNS, IIT-Delhi and CSIR for the research fellowships.

I am grateful to all the members of my family for their constant encouragement throughout my academic career which undoubtedly, has added much to my will and vigour to pursue my research work.

I thank my colleagues T.Duraisamy and Sanjeev Sharma for the support both in the laboratory and outside.

Finally, I also wish to express my appreciation and warm feelings of gratitude to all my friends Thirumal, KVT. Ravi, Venkatesan, Charles, Hekmatyar khan, Thiagarajan, Patric Pancras, Suresh kumar, Parvesh Wadwani, Pankaj kumar Tiwari, K. Kadarkaraisamy, Dr. Surjit Dixit, Satish kumar, Rajagopalan, John, Balamurugan, A.Thimmiiah, Vidyasagar Swamy, including Dr.S. Ayyappan(UCSB, California, USA), Dr.P. Manikandan (Weizmann Institute of Science, Israel) and Dr. K. Kamaraj(Johns Hopkins University, Baltimore, USA).
ABSTRACT

Since the discovery of vanadium phosphate as an active and selective catalyst for the mild oxidation of n-butane to maleic anhydride, there has been extensive research work towards synthesizing new vanadium phosphates. Particular emphasis has been placed on metal incorporation into vanadyl phosphates. The present study is directed towards developing hydrothermal reactions for the synthesis of novel metal intercalated layered vanadyl phosphates. We report here the synthesis, characterization and magnetic properties of eight new vanadyl phosphates. This thesis is divided into four chapters with the contents therein detailed below.

Chapter I describes a brief review on structure, synthesis and properties of metal/organic molecule intercalated vanadyl phosphates along with the parent VOPO$_4$.2H$_2$O reported in the literature. Like many inorganic solids, vanadyl phosphates are capable of undergoing intercalation reaction with small ions such as H$^+$, Li$^+$ and Na$^+$. The host solid in these reactions undergoes reduction, with the inserted cation occupying formerly empty sites of the host. In the presence of metal iodides as reducing agents, cations M$^+$ can be reductively intercalated to form M$_x$VOPO$_4$.yH$_2$O (A=Li$^+$, Na$^+$, K$^+$, Rb$^+$, Cs$^+$, Mg$^{2+}$, Mn$^{2+}$, Co$^{2+}$, Ni$^{2+}$ and Zn$^{2+}$). In recent years, hydrothermal reactions have been found to be an effective route to prepare new intercalated materials, M$_x$VOPO$_4$.yH$_2$O (M=Na, K, Ca, Co, Ni, Cu, Sr, Ba, Pb,) as well as to grow suitable single crystals for detailed structural characterization. A brief summary of the structure, synthesis and properties of layered vanadyl phosphates is reported in this chapter. In addition, we have
also described vanadium phosphates templated with organic molecule that exhibits 1D, 2D, 3D network structures and their interesting magnetic properties.

Chapter II describes the preparation and characterisation of metal intercalated vanadyl phosphates, \(M_x V_2 P_2 O_7 \cdot yH_2O \) (\(M=Na, K, Mg, Fe, Co, Ni, Cu, Zn, Cd, Ag, Sn, Mo, W \)) and organic molecule (ethylenediamine, 1,4-diaminobenzene, ferrocene, cobaltacene) intercalated vanadyl phosphates. Effect of hydrothermal technique to grow mono-phasic vanadium phosphates is discussed. Use of metal powder as the reducing agents as well as counter cation has yielded several new transition and alkaline earth metal intercalated vanadyl phosphates. We have demonstrated the use of alkaliborohydrides for the synthesis of alkali metal ion intercalated vanadyl phosphates. Amount of water appears to be crucial in the formation of \(M_x V_2 P_2 O_7 \cdot yH_2O \) and \(VO(H_2PO_4)_2 \) through hydrothermal reaction. A new method for the preparation of \(VO(H_2PO_4)_2 \) in good yield with reproducible structural characteristics is presented.

Chapter III describes the full structures of metal intercalated vanadyl phosphates (VPO), \(M_x V_2 P_2 O_7 \cdot 2H_2O \) (\(M=Ag, Cu, Zn \)), ethylenediamine intercalated vanadyl phosphate and \(VO(H_2PO_4)_2 \). The structures are related to that of \(VOPO_4 \cdot 2H_2O \) but with a different stacking sequence. In \(VOPO_4 \cdot 2H_2O \), the VPO layers stack directly on top of each other so that each \(V=O \) group is oriented towards the water molecule which is weakly co-ordinated \(trans \) to the \(V=O \) group of an adjacent layer. In the Cu and Zn compounds, adjacent layers are offset from one another so that all atoms of the same kind (e.g., all V or all P) form strings parallel with the triclinic \(c \) axis. However, the VPO
layers in the \(M=\text{Ag} \) compound are offset so that alternating \(V \) and \(P \) atoms lie in strings parallel with the triclinic \(c \) axis. This results in the doubling of the \(c \) axis in \(\text{AgVPO} \) relative to \(\text{CuVPO} \) and \(\text{ZnVPO} \). The structure of \((\text{en})_5[\text{VO}_2\text{PO}_4\{\text{P(OH)}_2\}]_{0.44} \) contains layers made of \(\text{VO}_3 \) square pyramids and \(\text{PO}_4 \) tetrahedra sharing vertices on \(ab \)-plane. An interesting feature of this structure is that \(\text{VO}_3 \) on adjacent layers are connected through disordered tetrahedral \(\text{PO}_4(\text{OH})_2 \) units to form a three-dimensional network. The crystal structure of \(\text{VO(H}_2\text{PO}_4)_2 \) is built up from single chains of \(\text{VO}_6 \) running parallel to the \(c \)-axis and linked together via corner sharing tetrahedral \(\text{PO}_4(\text{OH})_2 \) units. Single chain of \(\text{VO}_6 \) octahedra, along the \(c \)-axis lead to a sequence of disordered short and long vanadium oxygen bonds.

Chapter IV describes magnetic properties of metal intercalated layered vanadyl phosphates \(M_x\text{VOPO}_4.y\text{H}_2\text{O} \) (\(M=\text{Na}, \text{Mg}, \text{Ag}, \text{Cu}, \text{Zn} \)), \(\text{enVPO} \) and \(\text{VO(H}_2\text{PO}_4)_2 \). The susceptibility data of all \(M_x\text{VOPO}_4.y\text{H}_2\text{O} \) were modelled over the complete temperature range (300-2K) according to a modified Curie-Weiss equation, \(1/\chi = (T-\theta)/[\chi_0(T-\theta)+C] \), where \(\chi \) is magnetic susceptibility, \(\theta \) is Weiss constant, \(C \) is Curie constant, \(T \) is the absolute temperature and \(\chi_0 \) is temperature independent paramagnetism(TIP). All the materials exhibited unusual magnetic behaviour ranging from ferro to anti-ferromagnetic interaction at low temperatures(<50 K). \(\text{NaVPO} \), \(\text{AgVPO} \) and \(\text{enVPO} \) show ferromagnetic behaviour while \(\text{MgVPO} \), \(\text{CuVPO} \), \(\text{ZnVPO} \), and \(\text{VO(H}_2\text{PO}_4)_2 \) show antiferromagnetic behaviour. The data reveal that the magnetic behaviour depends not only on the type of metal ion incorporated but also on the arrangement of vanadate and phosphate groups within the layers. Our studies clearly demonstrate that preparation of
well-characterized materials in terms of structure and phase purity is essential to interpret the magnetic properties unambiguously.

Due acknowledgement has been made to other investigators wherever the work described is based on their findings. The author apologizes for any omission or mistakes, which might have occurred due to oversight.
TABLE OF CONTENTS

CERTIFICATE (i)

ACKNOWLEDGEMENTS (ii)

ABSTRACT (iii)

LIST OF FIGURES (vii)

CHAPTER I: A REVIEW ON VANADYL PHOSPHATES

1.1 Introduction 1

1.2 Structural chemistry of vanadyl phosphates 2
 1.2.1 Structures of hydrated vanadyl phosphates 3
 1.2.2 Polymorphic modifications of VOPO₄ 9
 1.2.3 Structures of metal intercalated layered vanadyl phosphates 11
 1.2.4 Structures of vanadyl phosphates intercalated with organic molecules 19

1.3 Synthesis of vanadyl phosphates 23
 1.3.1 Synthesis of M-V-P-O phases by conventional solid state reaction 23
 1.3.2 Synthesis of vanadyl phosphates through intercalation chemistry 24
 1.3.2.1 Intercalation of metal ions into vanadyl phosphates 24
 1.3.2.2 Intercalation of organic molecule into layered vanadyl phosphate 25
 1.3.3 Hydrothermal synthesis of V-P-O 27

1.4 Properties of vanadyl phosphates 32
 1.4.1 Catalytic properties 32
 1.4.1 Magnetic properties of vandyl phosphates 33

1.5 Motivation for the present work 35

CHAPTER II: EXPERIMENTAL: SYNTHESIS AND CHARACTERISATION OF INTERCALATED VANADYL PHOSPHATES

II.1 General synthetic scheme 47

II.2 Experimental methods 47

II.3 Synthesis and characterization of vanadium phosphates 51
 II.3.1 Synthesis of alkali metal intercalated vanadyl phosphates using alkali borohydride as a reducing agent 51
 II.3.2 Synthesis of metal ion intercalated vanadyl phosphates using metal powder as reducing agent 65
CHAPTER III: SINGLE CRYSTAL X-RAY DIFFRACTION STUDIES ON INTERCALATED VANADYL PHOSPHATES

 III.1 Details of single crystal data collection for $M_x VOPO_4.yH_2O$ ($M=Ag, Cu, Zn$) 128
 III.2 Crystal structure of $Cu_{0.16}VOPO_4.2.5H_2O$ (CuVPO) 129
 III.3 Crystal structure of $Zn_{0.11}VOPO_4.2.5H_2O$ (ZnVPO) 136
 III.4 Crystal structure of $Ag_{0.43}VOPO_4.2H_2O$ (AgVPO) 142
 III.5 Crystal structure of ($H_3NCH_2CH_2NH_3)_{0.51}[VO_2(PO_4)\{P(OH)\}_2]_{0.44}$ (enVPO) 153
 III.6 Crystal structure of $VO(H_2PO_4)_2$ 163

CHAPTER IV: MAGNETIC PROPERTIES OF INTERCALATED VANADYL PHOSPHATES

 IV.1 Introduction 172
 IV.2 Magnetic susceptibility measurements 174
 IV.3 Magnetic properties of metal intercalated vanadyl phosphates 175
 IV.4 Magnetic properties of ethylenediamine intercalated vanadyl phosphate 185
 IV.5 Magnetic properties of $VO(H_2PO_4)_2$ 189

REFERENCES 195

CONCLUSIONS 205

LIST OF PUBLICATIONS 207

BIO DATA OF THE AUTHOR 208