TESTING AND MODELING THE BEHAVIOUR OF RIVERBED AND QUARRIED ROCKFILL MATERIALS

by

SYED MOHD ABBAS
Department of Civil Engineering

Submitted in fulfillment of the requirements of the degree of DOCTOR OF PHILOSOPHY to the INDIAN INSTITUTE OF TECHNOLOGY, DELHI

MAY, 2003
CERTIFICATE

This is to certify that the thesis entitled "TESTING AND MODELING THE BEHAVIOUR OF RIVERBED AND QUARRIED ROCKFILL MATERIALS" being submitted by Mr. Syed Mohd Abbas to the Indian Institute of Technology, Delhi is a record of bonafide research work carried out by him under our supervision and guidance. The thesis work, in our opinion, has reached the standard, fulfilling the requirements for DOCTOR OF PHILOSOPHY degree. The research report and the results presented in this thesis have not been submitted, in part or full, to any other University or Institute, for the award of any degree or diploma.

(DR. A. VARADARAJAN)
Dogra Chair Professor

(DR. K. G. SHARMA)
Professor

Department of Civil Engineering
Indian Institute of Technology
New Delhi- 110 016
I express my deepest gratitude to my supervisors, Dr. A. Varadarajan, Dogra Chair Professor and Dr. K. G. Sharma, Professor, for their valuable guidance, keen interest, constant encouragement, punctuality and continuous support besides inspiration and kind help rendered to me during the entire period of this research work.

I am grateful to the authorities of Jamia Millia Islamia (JMI), New Delhi, for giving me study leave for this research work.

I take this opportunity to thank Dr. K. Venkatachalam, the then Director, Central Soil and Materials Research Station (CSMRS), New Delhi for allowing me to carry the experimental work at CSMRS. I also thank his team of scientists and the staff members of rockfill technology unit, CSMRS for their help during the experimental work.

I wish to acknowledge various authorities of the project sites from which the rockfill materials were collected.

I also wish to thank to the staff of soil and rock laboratories, IIT, Delhi without their help the experimental work was not possible.

I would like to express gratitude to Mr. Rakesh Kumar, research scholar, who helped me in many ways.

At this time, I would like to remember my father who expired on 29th of December 2002. May Allah peace be upon him. He had a big role in my life. I am very much thankful to my mother without her support and help I could not come at this level of success. May Allah give her long life.
I strongly appreciate the great support of my elder brother Dr. Husain Abbas, Professor, AMU, Aligarh who always encouraged me for the work and gave valuable suggestions.

I extend grateful appreciation to my father-in-law, mother-in-law and their family members who have contributed in many ways.

Lastly but not the least, I wish to express my gratitude to my wife, Sadiqa, for her constant encouragement, moral support and great patience. I am also indebted to my little son, Aaquil, who had to live with inadequate attention and affection during this period.

(Syed Mohd Abbas)
ABSTRACT

Rockfill dams are increasingly used in the hydro-power projects. The behaviour of rockfill material used in the construction of these dams is affected by number of factors such as mineral composition, particle size, shape, grading, relative density and surface texture of the particles. The understanding and characterisation of the behaviour of rockfill material are of considerable importance for the analysis and the design of the rockfill dams.

For the present research work two types of rockfill materials viz. riverbed (from seven project sites) and quarried (from three project sites) have been considered. These materials have been modeled to three smaller maximum particle sizes (d_{max}) by parallel gradation technique to test in the laboratory.

Drained triaxial tests have been conducted on these modeled materials at four confining pressures. Breakage factors have been determined at the end of each triaxial test. The breakage factors at various stress levels (35% and 70% of failure load) have also been determined for the modeled quarried rockfill material obtained from Purulia dam site in addition to those at failure stress. For all the modeled rockfill materials, stress-strain-volume change responses have been plotted and ϕ-values have been determined. It is observed that (i) for quarried materials volume expansion is high as compared to that of riverbed materials, (ii) the rate of change of breakage factor with respect to confining pressure is higher in case of quarried materials than that for riverbed materials, (iii) ϕ-value increases for riverbed materials while decreases for quarried materials with increase in d_{max}.
Various index properties viz. unconfined compressive strength (UCS) and uncompacted void content (UVC) of the rockfill materials have also been determined in the laboratory. The UCS represents the strength of the particles and UVC represents grading, size, shape, angularity and surface texture of the particles. The behaviour of the rockfill materials has been explained in terms of these index properties.

To characterize the behaviour of the rockfill materials, a constitutive model based on disturbed state concept (DSC) has been adopted. The triaxial data of a material have been divided into two groups viz. A and B. Group A data has been used to determine the parameters of the constitutive model of that material while Group B data has not been used. The behaviour of the material has satisfactorily been predicted for both the groups. From the material parameters, it is observed that (i) the elasticity parameter, k increases for the riverbed and decreases for the quarried materials with respect to d_{max} while n' does not have any definite trend, (ii) the ultimate parameter, γ increases for the riverbed and decreases for the quarried materials with respect to d_{max} while β is constant and has a value of 0.73 (iii) the hardening parameter, a_1 increases for quarried and decreases for riverbed materials with respect to d_{max} while η_1 has reverse trend.

Shear strength of the granular material is known to depend on the basic characteristics viz. relative density, size, shape, strength, angularity and surface texture of the particles. This concept has been extended to the rockfill materials in the present study. A method has been proposed to relate the basic characteristics in terms of UCS and UVC of the rockfill materials with the shear strength parameter (ϕ). The back prediction of ϕ-value with this method has been successfully made. The ϕ-values
of the prototype materials have also been predicted. The predicted ϕ-values of prototype materials have been compared with the existing extrapolation technique. The difference in ϕ-values obtained by the two methods is very high. It appears that the proposed method is realistic.

An extrapolation technique based on B' (which is a function of UCS and UVC) has been proposed to predict the material parameters of the constitutive model for prototype material. With these parameters, the stress-strain-volume change behaviour of the prototype rockfill materials has been predicted.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERTIFICATE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii-iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv-vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>vii-xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv-xxv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxvi-xxvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ACRONYMS</td>
<td>xxviii-xxxiii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1-6</td>
</tr>
<tr>
<td>1.1 GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.2 OBJECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>1.3 SCOPE</td>
<td>3</td>
</tr>
<tr>
<td>1.4 ORGANISATION OF THE THESIS</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW</td>
<td>7-44</td>
</tr>
<tr>
<td>2.1 GENERAL</td>
<td>7</td>
</tr>
<tr>
<td>2.2 MODELING OF ROCKFILL MATERIALS</td>
<td>8</td>
</tr>
<tr>
<td>2.3 TESTING OF ROCKFILL MATERIALS</td>
<td>9</td>
</tr>
<tr>
<td>2.4 MATERIALS USED FOR TESTING</td>
<td>10</td>
</tr>
<tr>
<td>2.5 PARTICLE BREAKAGE</td>
<td>10</td>
</tr>
<tr>
<td>2.6 BEHAVIOUR OF THE ROCKFILL MATERIALS</td>
<td>13</td>
</tr>
<tr>
<td>2.7 CONSTITUTIVE MODELING</td>
<td>19</td>
</tr>
<tr>
<td>2.7.1 Empirical Models</td>
<td>20</td>
</tr>
<tr>
<td>2.7.2 Elasticity Models</td>
<td>21</td>
</tr>
</tbody>
</table>
2.7.3 Plasticity Models

2.7.3.1 Mohr-Coulomb Criterion

2.7.3.2 Drucker-Prager Yield Criterion

2.7.3.3 Critical State Model

2.7.3.4 Hierarchical Single Surface Model (HISS)

2.7.3.5 Disturbed State Concept

2.7.3.5.1 Relatively Intact (RI) State

2.7.3.5.2 Fully Adjusted (FA) State

2.7.3.5.3 Disturbance Function (D)

2.8 FACTORS AFFECTING SHEAR STRENGTH

2.8.1 Relative Density

2.8.2 Grading of the Materials

2.8.3 Individual Particle Strength

2.8.4 Maximum Particle Size

2.8.5 Angularity, Shape and Surface Texture of the Particles

2.9 PREDICTION OF SHEAR STRENGTH PARAMETER

2.10 CONCLUSIONS AND SCOPE OF THE INVESTIGATION

CHAPTER 3 EXPERIMENTAL INVESTIGATION

3.1 GENERAL

3.2 THE PROJECTS AND THE MATERIALS

3.2.1 Tehri Dam Hydro-Power Project

3.2.2 Kol Dam Hydro-Electric Project

3.2.3 Ranjit Sagar Dam Hydro-Electric Project

3.2.4 Purulia Dam Pumped Storage Hydro-Electric Project

3.2.5 Parbati Dam Hydro-Electric Project, Stage-III
3.2.6 Shah Nehar Irrigation Project 51
3.2.7 Western Yamuna Canal, Hydro-Electric Power Project, Stage-II 52

3.3 GRADATION OF MATERIAL 52
3.3.1 Gradation of Prototype Materials 52
3.3.2 Gradation of Modeled Materials 52

3.4 MATERIALS USED FOR TESTING 57

3.5 EXPERIMENTAL PROGRAMME 63
3.5.1 Index Properties 63
3.5.1.1 Specific Gravity (ASTM C127-01) 63
3.5.1.2 Water Absorption Ratio (ASTM C127-01) 63
3.5.1.3 Aggregate Impact Value (IS: 2386 (Part IV) 1963) 63
3.5.1.4 Aggregate Crushing Value (IS: 2386 (Part IV) 1963) 64
3.5.1.5 Los Angeles Abrasion Value (IS: 2386 (Part IV) 1963) 64
3.5.1.6 Unconfined Compressive Strength (UCS) 64
3.5.1.6.1 The Procedure (ASTM D2938-95) 65
3.5.1.7 Uncompacted Void Content (UVC) 65
3.5.1.7.1 The Apparatus (ASTM C1252-98) 69
3.5.1.7.2 The Procedure 69

3.5.2 Drained Triaxial Test 69
3.5.2.1 Triaxial Test Setup 72
3.5.2.1.1 Axial Loading Unit 73
3.5.2.1.2 Confining Pressure Unit 73
3.5.2.1.3 Measurement of Strains 73
3.5.2.1.4 Rubber Membranes 73
3.5.2.2 Drained Triaxial Tests 73
3.5.2.2.1 Preparation and Setting up of Specimen

3.5.2.2.2 Assembling the Triaxial Cell

3.5.2.2.3 Consolidation

3.5.2.2.4 Shearing the Specimen

3.5.2.2.5 Dismantling

3.5.2.2.6 Breakage Factor

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 GENERAL

4.2 RIVERBED ROCKFILL MATERIALS

4.2.1 Particles Breakage

4.2.2 Stress-Strain-Volume Change Behaviour

4.2.3 Elastic Parameters

4.2.4 Strength Parameters

4.3 QUARRIED ROCKFILL MATERIALS

4.3.1 Particles Breakage

4.3.2 Stress-Strain-Volume Change Behaviour

4.3.3 Elastic Parameters

4.3.4 Strength Parameters

4.4 DISCUSSION

4.4.1 Uncompacted Void Content (UVC)

4.4.2 Breakage Factor

4.4.3 Volumetric Strains

4.4.4 Elastic Parameters

4.4.5 Strength Parameter

4.5 BREAKAGE FACTOR VARIATION
6.2.8 Interpretation of Results

6.3 ANALYSIS
6.3.1 Elasto-Plastic Analysis
 6.3.1.1 The Solution Algorithm
 6.3.1.2 Drift Correction Procedure
 6.3.1.3 Convergence

6.4 FEATURES OF COMPUTER CODE (DSC-SST-2D)

CHAPTER 7 VERIFICATION OF THE CONSTITUTIVE MODEL 152-184
7.1 GENERAL
7.2 MATERIAL PARAMETERS FOR THE MODELED ROCKFILL MATERIALS
 7.2.1 Riverbed Modeled Rockfill Materials
 7.2.2 Quarried Modeled Rockfill Materials
7.3 PREDICTIONS FOR THE MODELED ROCKFILL MATERIALS
7.4 RESULTS AND DISCUSSION (MODELED ROCKFILL MATERIALS)
 7.4.1 Yield Surface
 7.4.1.1 Riverbed Modeled Rockfill Material
 7.4.1.2 Quarried Modeled Rockfill Material
 7.4.2 Stress-Strain-Volume Change Response
 7.4.2.1 Riverbed Modeled Rockfill Material
 7.4.2.2 Quarried Modeled Rockfill Material
7.5 CONCLUSIONS

CHAPTER 8 PREDICTION OF THE BEHAVIOUR OF THE ROCKFILL MATERIALS WITH VARIOUS MAXIMUM PARTICLE SIZES 185-227
8.1 GENERAL
8.2 SHEAR STRENGTH
8.3 DETERMINATION OF COEFFICIENTS AND POWERS
8.4 BACK PREDICTION OF SHEAR STRENGTH PARAMETER
8.5 PREDICTION OF SHEAR PARAMETER FOR PROTOTYPE MAXIMUM PARTICLE SIZES
8.6 PREDICTION OF MATERIAL PARAMETERS OF THE CONSTITUTIVE MODEL FOR PROTOTYPE ROCKFILL MATERIALS
8.7 CONCLUSIONS

CHAPTER 9 SUMMARY AND CONCLUSIONS

9.1 GENERAL
9.2 EXPERIMENTAL STUDY
9.3 CONSTITUTIVE MODELING
9.4 PREDICTION OF SHEAR STRENGTH PARAMETER AND THE BEHAVIOUR OF THE PROTOTYPE ROCKFILL MATERIAL
9.5 SUGGESTIONS FOR FURTHER WORK

REFERENCES
APPENDIX I
APPENDIX II
APPENDIX III
APPENDIX IV
BRIEF BIO-DATA OF THE AUTHOR