ANALYSIS AND DESIGN OF INTERCONNECTED
SKEW GIRDER BRIDGES

RAMJI AGRAWAL

THESIS SUBMITTED
FOR THE AWARD OF THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
CIVIL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, DELHI
NEW DELHI- 110029
INDIA
1975
CERTIFICATE

This is to certify that the thesis entitled, 'Analysis and Design of Interconnected Skew Girder Bridges' being submitted by Sri Ramji Agrawal to the Indian Institute of Technology, Delhi for the award of Degree of Doctor of Philosophy in Civil Engineering, is a record of bonafide research work carried out by him. Sri Ramji Agrawal has worked under my guidance and supervision and has fulfilled the requirements for the submission of this thesis, which, to my knowledge, has reached the requisite standard.

The results contained in this thesis have not been submitted, in part or in full, to any other University or Institute for the award of any degree or diploma.

(C.S. Surana)
Civil Engineering Department,
Indian Institute of Technology, Hauz Khas
New Delhi-110029, India
This thesis owes its materialization to the untiring efforts of Dr. C.S. Surana, who sacrificed so much of his valuable time and leisure in explaining the many intriguing facets of this problem. The author can record only his utmost gratitude for the kind help, guidance and constant encouragement throughout this investigation.

The author is deeply grateful to Prof. B.M. Ahuja for providing his inspiring guidance and valuable suggestions during the experimental stage of the work. The author is also thankful to Prof. Saranjit Singh, Prof. K. Sentharamulu, Prof. A.K. Basu and Dr. S. Krishnamoorthy of the Department of Civil Engineering for providing necessary laboratory and departmental facilities.

The author thankfully acknowledges the financial support given by the Council of Scientific and Industrial Research for this project.

The author is highly indebted to Prof. N. Roy, Prof. R.B. Singh, Prof. Ashok Kumar and Prof. V.B. Mishra of Civil Engineering Department, I.T., B.H.U., Varanasi, for taking interest in the work and providing him with an opportunity to work at I.I.T., Delhi.

For my dear friends Sarvsri R.N. Munshi, A.M. Antani, B.B. Bansal, S.K. Mishra, J.N. Dube, A.K. Nagpal, Anil Kumar,
SYNOPSIS

Numerous analytical and experimental studies have been reported in the field of skew slabs but very limited literature is available in the area of skew girder bridges. Further, the researchers in this field have been giving more emphasis on the analysis part and very little effort has been made to develop a generalised and simple design procedure for such bridges suitable for design offices. In this thesis, an attempt has been made to present a design method for skew girder bridges, after taking into account its actual structural behaviour with reasonable practical accuracy to suit the designers. The present investigation includes the following aspects:

1. An elastic analysis of interconnected skew girder bridges is presented using the method of Harmonic analysis. The analysis is initially made for a three girder, simply supported bridge and then extended to the case of bridges having several longitudinals and to continuous and right bridges. The actual transverse medium has been replaced by an equivalent uniform continuous medium. The torsional rigidities of the longitudinal girders and the transverse medium have been taken into account. The loading consists of the first three harmonics in the form of Sine series and each girder has been loaded at a time with only one harmonic loading. For each longitudinal, the deflection and the rotation have been assumed to be made up of the first three harmonics of the Sine and Cosine Fourier series respectively. This introduces six deformation coefficients per girder.

* The number in parenthesis indicates the reference number in the List of References.
The moments and shears per unit length at a transverse section considered, have been written down from the slope deflection equations and the necessary simultaneous linear equations have been formulated. These equations are in terms of dimensionless parameters and are solvable by computer for any given case. Their solution gives the deflection and the rotation coefficients for each girder. From these coefficients, other influences are obtained by successive differentiation.

The above proposed method is an improvement over the method suggested by Airna (55) in the sense that it takes into account the first three harmonic terms of the general Sine form of loading instead of concentrated loads. This procedure considerably facilitated the preparation of design graphs and charts for moment coefficients. Also, by taking three harmonic terms in the rotation expression, there is significant improvement in the rotational form of the structure as substantiated by the experimental results. This has also improved the load distribution in the system.

2. The bending and torsional coefficients have been obtained for various dimensionless bridge parameters for one harmonic loading at a time and a family of curves have been drawn for each coefficient. Using these curves, the moment coefficients for a particular set of bridge parameters are evaluated from which the design bending and torsional moments, deflection, shear etc. can be found out. Thus the method is versatile in
nature as the design of skew girder bridges of any dimension and skewness is possible without using the computer facility. A bridge is analysed to illustrate the use of the design graphs for moment coefficients.

3. To show the accuracy and the validity of the proposed method in comparison to other methods of analysis, a grid has been analysed. A reinforced concrete three girder skew bridge representing an actual design problem, is analysed to show the accuracy of the proposed method for such bridges. The analysis of a five girder composite skew bridge is also presented for the purpose.

4. The laboratory tests on five steel grid models have been conducted. The experimentation has been undertaken with two main objectives - firstly to verify the accuracy of the theoretical rotational form assumed in the analysis and secondly to find out the efficient orientation of the transversals in skew girder bridges. A right steel grid with three longitudinals has also been tested to verify the applicability of the proposed method to the case of right bridges.

5. The experimentation also consisted of tests on three scale models of reinforced concrete bridges. The objects of the testing have been to establish the accuracy and the applicability of the proposed method of analysis to concrete bridges and to study the elastic behaviour of the structure under design loads.
and the mode of failure at ultimate. The models have been tested extensively first in the elastic range and then upto failure. The experimental results have been compared with the theoretical results.
CONTENTS

ACKNOWLEDGEMENTS (ii)

SYNOPSIS (iv)

LIST OF FIGURES (xiii)

LIST OF PHOTOGRAPHS (xvi)

LIST OF SYMBOLS (xvii)

CHAPTER I

INTRODUCTION

1.1 General 1

1.2 Literature Review 3

1.2.1 Skew Slab Bridges 4

1.2.2 Skew Girder Bridges 8

1.3 Object and Scope 25

1.4 Outline of the Thesis 26

CHAPTER II

METHOD OF ANALYSIS 29 - 63

2.1 Introduction 29

2.2 Basic Assumptions 29

2.3 Sign Convention 30

2.4 Formulation of Equations for Three Girder Bridge 30

2.4.1 Load-Deflection Equations 32

2.4.2 Torque-Equilibrium Equations 46

2.4.3 Torque-Rotation Equations 48

2.4.4 Computer Programme 53

CHAPTER III

DETERMINATION OF MOMENT COEFFICIENTS

- **3.1 Introduction**
- **3.2 Modification in the Proposed Method of Analysis**
- **3.3 Determination of Moment Coefficients**
- **3.4 Computation of Bending Moment**
- **3.5 Computation of Torsional Moment**
- **3.6 Bridge Parameters and their Ranges of Variations**
- **3.7 Interpolation Functions**
- **3.8 Design Graphs for Bending and Torsional Moment Coefficients**
- **3.9 Discussion**

CHAPTER IV

ILLUSTRATION OF DESIGN PROCEDURE USING MOMENT COEFFICIENTS

- **4.1 Formulation of Problem**
- **4.2 Analysis of a Three Girder Skew Bridge Using Moment Coefficients**
 - **4.2.1 Moment Coefficients for Girders Using Design Graphs and Interpolation Functions**
 - **4.2.2 Moment Coefficients from Direct Solution**
- **4.3 Comparison and Discussion**
CHAPTER V

COMPARISON OF THE PROPOSED METHOD OF ANALYSIS

5.1 Introduction
5.2 The Grid Frame
5.3 Analysis by the Proposed Method
5.4 Analysis by the Stiffness Method
5.5 Analysis by Surana's Method
5.6 Analysis by Finite Difference Method
5.7 Comparison and Discussion

CHAPTER VI

ANALYSIS OF A REINFORCED CONCRETE BRIDGE AND A COMPOSITE BRIDGE AND COMPARISON OF RESULTS

6.1 The Three Girder Reinforced Concrete Bridge
 6.1.1 Details of the bridge
 6.1.2 Analysis by the Proposed Method
 6.1.3 Analysis by the Stiffness Method
 6.1.4 Comparison of results
6.2 A Five Girder Composite Bridge
 6.2.1 Analysis by Different Methods
 6.2.2 Experimental Results
6.3 Comparison and Discussion

CHAPTER VII

EXPERIMENTAL INVESTIGATIONS ON SKEW GRID FRAMES

7.1 Object and Scheme of Experimentation
7.2 General Description of Grid Frames
(Xii)

7.3 The Test Rig, Bearings and the Loading Arrangements 162
7.4 Control Tests 171
 7.4.1 Cross-Sectional Measurements 172
 7.4.2 Modulus of Elasticity of Steel Fats 172
 7.4.3 Moment-Strain Relationship 172
7.5 Instrumentation 174
7.6 Testing Procedure and Loading Conditions 177
7.7 Comparison of Experimental Results for Grids I, II and III 178
7.8 Comparison of Theoretical & Experimental Results for Grid I 179
7.9 A Five Longitudinal Skew Grid Frame 184
7.10 A Right Grid 189
7.11 Discussion 196

CHAPTER VIII
TESTS ON REINFORCED CONCRETE MODELS OF SKEW GIRDER BRIDGES 197-215
8.1 Introduction 197
8.2 Details of Reinforced Concrete Bridge Models 197
8.3 Loading Frame 201
8.4 Supporting Arrangements - The Bearings 201
8.5 Instrumentation 206
8.6 Control Tests 211
 8.6.1 Compressive Strength of Concrete 212
 8.6.2 Modulus of Rupture 212
 8.6.3 Modulus of Elasticity of Concrete 212
 8.6.4 Modulus of Elasticity of Steel 215
8.7 Tests on the Bridge
 8.7.1 Cracking Test 215
 8.7.2 Single Point-Load Test 217
 8.7.2.1 Computation of Bridge Parameters 236
 8.7.2.2 Theoretical Results 237
 8.7.2.3 Comparison and Discussion 237
 8.7.3 Ultimate Test 243
 8.7.3.1 Loading Arrangements 244
 8.7.3.2 Test Procedure 244
 8.7.3.3 Test Results 246
 8.7.3.4 Crack Patterns 250
 8.7.3.5 Discussion 253

CHAPTER IX

SUMMARY, CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH 254-2

REFERENCES 263-271

APPENDICES 272-286

A. Harmonics of Loadings 272
B. Input Data for Reinforced Concrete Bridge 284
C. Input Data for Composite Bridge 286