EXPERIMENTAL INVESTIGATION OF HIGH
PERFORMANCE CONCRETE UNDER
REPEATED COMPRRESSIVE LOADING

by
R.B. KHADIRANAIKAR
DEPARTMENT OF CIVIL ENGINEERING

A thesis submitted in fulfilment of the requirements
for the award of the degree of

DOCTOR OF PHILOSOPHY

to the

INDIAN INSTITUTE OF TECHNOLOGY, DELHI
NEW DELHI, INDIA

APRIL, 2003
Dedicated to the Everlasting

Memory of My

Grand Mother

Parents

And

Father-in-Law

Shri. M. H. Babakkanavar
CERTIFICATE

This is to certify that the thesis entitled "Behaviour of High Performance Concrete under Repeated Compressive Loading" being submitted by R.B.Khadiranaikar to the Indian Institute of Technology, Delhi for the award of the Degree of Doctor of Philosophy in Civil Engineering, is a record of bonafide research work carried out by him. Mr. R.B.Khadiranaikar has worked under our guidance and supervision and has fulfilled the requirements for the submission of this thesis, which to our knowledge has reached the requisite standard.

This thesis or any part thereof, has not been submitted to any other University or Institute for the award of any degree or diploma.

Dr. Alok Madan
Assistant Professor

Prof. S.N. Sinha
Professor and Head

Civil Engineering Department
Indian Institute of Technology, Delhi
New Delhi – 110 016, India
ACKNOWLEDGEMENTS

I wish to express my profound gratitude and indebtedness to my research supervisors Prof. S. N. Sinha, Professor and Head and Dr. Alok Madan, Assistant Professor, Civil Engineering Department, Indian Institute of Technology, Delhi, for their guidance and supervision throughout the duration of this research. The knowledge and experience that I have gained working under them will forever be valuable and appreciated. The staff of the structural Engineering Laboratory and Civil Engineering Workshop deserves special thanks for their cooperation and assistance in the Laboratory work.

I am thankful to the Government of Karnataka and Shri. V.C. Charantimath, Chairman, Governing Council, B.V.V. Sangha, Bagalkot for deputing me under Quality Improvement Program. I would also like to place on record the cooperation, assistance and moral boosting provided by Prof. Eshappa Shetra, Principal and Dr. R.N. Herkal, Professor and Head, Civil Engineering Department, Basaveshwar Engineering College, Bagalkot. I am grateful to A.I.C.T.E. and M.H.R.D. for providing me scholarship under Q.I.P.

No superlative will be able to do full justice in expressing the feelings and heartfelt appreciation for the contribution of my wife and children for bearing with me throughout the course of study and the successful completion of this thesis.

R.B. KHADIRANAIKAR
ABSTRACT

In this study, an experimental investigation was conducted to study the behaviour of high performance concrete under repeated compressive loading. Stress-strain characteristics, energy dissipation characteristics, stiffness degradation, brittleness and mode of failure are discussed.

The cylinder concrete specimens with flared ends having 150 mm diameter and a height of 400 mm were tested to investigate the behaviour under repeated compressive loading. Three grades of high performance concrete were investigated. Three types of tests were conducted for each grade of concrete: (i) Monotonic tests where load is increased to failure; (ii) Repeated loading – unloading in which the peak of each loading cycle approximately coincides with the monotonic curve. The stress-strain hysteresis of this test possessed a locus of common points, which is a point of intersection of reloading curve with the previous unloading curve; (iii) Tests consisting repeated loading-unloading in which the repeated load was applied as in the second type except that in each cycle loading and unloading were repeated several times; each time the load was released when the reloading curve intersected the initial unloading curve. This point of intersection gradually descended and stabilised at a lowerbound point. Such lowerbound points are termed as stability points and the further cycling led to the formation of a closed hysteresis loop.
Single general mathematical expression is proposed for the determination of the envelope stress-strain curve, the locus of common points and the locus of stability points for all the three grades of concrete, which provides a reasonable fit with experimental data. Further a stability point curve for each grade of concrete is used in defining the permissible stress level of high performance concrete structures, where reduction of compressive strength due to the effect of repeated loading have to be taken into account. It is found that the level of plastic (residual) strain in the material is an important factor in defining the permissible stress under repeated loading.

A study was also made on the energy dissipation characteristics of high performance concrete under repeated compressive loading. Empirical expressions were suggested for the variation of energy dissipation ratio with the envelope strain and plastic strain. The relation between energy dissipation and plastic strain can be used to identify the point of load history at which the process of strength deterioration begins. The total energy has been divided into three components representing the energy dissipated in damage, energy dissipated in damping mechanism and elastic strain energy. Cumulative damage energy indicates the damage of the material. Lower strength concrete (i.e. M1 concrete) experienced more damage prior to peak strain and after the peak strain higher strength concrete indicated higher cumulative damage energy. Based on energy concepts brittleness indices were worked out for the three grades of concrete. Britteness index increases with the increase in strength.
Stiffness degradation and strength deterioration under repeated compressive loading were presented and it was quantified by mathematical expressions with respect to envelope strain, plastic strain and energy dissipation ratio. High performance concrete experienced strength deterioration and stiffness degradation as the number and intensity of load repetition increased.

A mathematical model is proposed to obtain the stress-strain reloading and unloading curves for high performance concrete under repeated compressive loading. Both reloading and unloading curves were found to depend on the plastic strain level. It was shown that the reloading curves could be represented by exponential formula. The model for reloading curves involved plotting the reloading curves from a common origin by transferring them to a new normalised coordinate system. The unloading curve at any cyclic load level was modelled by a simple parabola. The model predictions compare well with the experimentally obtained stress-strain reloading and unloading curves.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>NOTATION</td>
<td>xv</td>
</tr>
<tr>
<td>Chapter 1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Justification of Present Investigation</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 2. LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Behaviour of Concrete under Sustained Cyclic Loads</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Uniaxial Cyclic loading</td>
<td>19</td>
</tr>
<tr>
<td>2.3.1 Envelope Unloading and Reloading Curves</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2 Common Points</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3 Non Recoverable Strains</td>
<td>30</td>
</tr>
<tr>
<td>2.3.4 Stress-Strain Relation</td>
<td>31</td>
</tr>
<tr>
<td>2.3.5 Failure Mechanism</td>
<td>37</td>
</tr>
<tr>
<td>2.4 Experiments on Mortar Specimens</td>
<td>42</td>
</tr>
<tr>
<td>2.5 Biaxial Loading</td>
<td>42</td>
</tr>
<tr>
<td>2.5.1 Solid Cylindrical Specimens</td>
<td>42</td>
</tr>
<tr>
<td>2.5.2 Hollow Cylindrical Specimens</td>
<td>46</td>
</tr>
<tr>
<td>2.5.3 Cubical Specimens</td>
<td>48</td>
</tr>
<tr>
<td>2.5.4 Plate Specimens</td>
<td>50</td>
</tr>
<tr>
<td>2.5.5 Previous Investigations on Microcracking</td>
<td>57</td>
</tr>
</tbody>
</table>
2.6 Tensile Strength ... 60
 2.6.1 Direct Tensile Strength ... 60
 2.6.2 Indirect Tensile Strength .. 62

2.7 Deformation ... 65
 2.7.1 Static Modulus ... 65
 2.7.2 Dynamic Modulus ... 67

2.8 Poisson's Ratio ... 68

2.9 Summary ... 68

Chapter 3. HPC MIX PROPORTIONING

3.1 Selection of Materials .. 72
 3.1.1 Cement ... 72
 3.1.2 Coarse Aggregate ... 74
 3.1.3 Fine Aggregate ... 75
 3.1.4 Mineral Admixtures ... 76
 3.1.4.1 Microsilica .. 76
 3.1.4.2 Flyash .. 77
 3.1.4.3 Slag .. 78
 3.1.5 Chemical Admixtures .. 79

3.2 Design of HPC Mixes .. 81
 3.2.1 ACI 211- 4R Standard Practice 81
 3.2.2 Mehta and Aitcin Simplified method 86
 3.2.3 de Larrard's Method (1990) 89
 3.2.4 British Method (BRE 1988) 92

3.3 Materials and Mix Proportioning 93
 3.3.1 Mixing, Casting and Curing 98
 3.3.2 Mix Proportions .. 98

3.4 Summary ... 99
Chapter 4. EXPERIMENTAL PROGRAM

4.1 Introduction ... 102
4.2 Test Specimen ... 102
4.3 Instrumentation .. 103
4.4 Test procedure .. 106
4.5 Summary.. 110

Chapter 5. BEHAVIOUR OF HPC UNDER UNIAXIAL REPEATED COMPRESSIVE LOADING

5.1 Introduction ... 111
5.2 Test Results and Evaluation 115
 5.2.1 Stress-Strain Envelope Curve 115
 5.2.2 Common point and stability point curves 123
 5.2.3 Analytical Curves 123
5.3 Concept of Cyclic Permissible Stress 141
5.4 Plastic Strain Variations 144
5.5 Failure Mode .. 155
5.6 Summary.. 161

Chapter 6. ENERGY DISSIPATION CHARACTERISTICS OF HPC UNDER REPEATED COMPRESSIVE LOADING

6.1 Introduction ... 163
6.2 Energy Dissipation Capacity 164
6.3 Damage and Energy Dissipation in HPC 183
 6.3.1 Strain Energy ... 186
 6.3.2 Damage Energy ... 190
 6.3.3 Damping Energy 195
6.4 Brittleness Index .. 199
6.5 Summary.. 202

Chapter 7. STIFFNESS DEGRADATION OF HPC UNDER UNIAXIAL REPEATED COMPRESSIVE LOADING

7.1 Introduction ... 204
7.2 The Coordinate System 207