STUDY OF ENHANCEMENT OF HEAT TRANSFER USING UP WASH DELTA WINGLETS IN FIN & TUBE HEAT EXCHANGERS

AMIT ARORA

DEPARTMENT OF MECHANICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY - DELHI (INDIA)
MAY 2016
Doctoral Dissertation Entitled

STUDY OF ENHANCEMENT OF HEAT TRANSFER USING UP WASH DELTA WINGLETS IN FIN & TUBE HEAT EXCHANGERS

by

AMIT ARORA
DEPARTMENT OF MECHANICAL ENGINEERING

Submitted in fulfillment of the requirements of the degree of

Doctor of Philosophy

to the

INDIAN INSTITUTE OF TECHNOLOGY - DELHI (INDIA)
MAY 2016
This is to certify that the thesis entitled ‘Study of enhancement of heat transfer using up-wash delta winglets in fin & tube heat exchangers’, being submitted by Amit Arora to the Indian Institute of Technology, Delhi for the award of degree of Doctor of Philosophy in Mechanical Engineering, is a record of bonafide research work carried out by him under our guidance and supervision. He has fulfilled the requirements for the submission of this thesis, which has attained the standard required for the aforementioned degree of this Institute. The results presented in this thesis have not been submitted in part or full elsewhere for the award of any other degree or diploma.

Dr. P. M. V. Subbarao
Professor
Department of Mechanical Engineering
Indian Institute of Technology
New Delhi - India

Dr. R. S. Agarwal
Professor
Department of Mechanical Engineering
Indian Institute of Technology
New Delhi - India
This page is intentionally left blank
FOREMOST, I will always remain grateful to the merciful Almighty who gave me an environment during my stay at IIT Delhi where I learnt a lot beyond just science and engineering, especially under the mentorship of my first supervisor. Words are insufficient for me to express my heartfelt adulation and sincere gratitude to both of my venerable supervisors and respected teachers Professor P.M.V. Subbarao and Professor R. S. Agarwal for their immense knowledge, constant inspiration and encouragement, invaluable guidance, thought provoking discussions and constructive criticism during the whole course of my doctoral investigation.

I also express my earnest thankfulness to other faculty members for their timely guidance and direction, especially Dr. Vivek Buwa, Dr. B. Premachandran, Dr. Prabal Talukdar, Professor Anjan Ray, Professor M R Ravi, Professor Sangeeta Kohli and Professor Sanjeev Jain. I sincerely acknowledge the cooperation and technical help extended by the technical staff of the department, especially Mr. Rajender Singh, Mr. Negi, Mr. Prem Singh, Mr. Shambhu, Mr. K. D. Khurana, Mr. Ayodhya Parsad and Mr. Tulsi Ram. My special thanks are due to Mr. Raj Verma, who helped a lot in conducting the experimental work. I am sincerely grateful to the fellow research scholars Mr. Kuldeep Singh, Dr. Dushyant Singh, Mr. Pranab Das, Mr. Kunal U. Sakekar for various valuable discussions.

I cannot close these thanks giving remarks without expressing my deep sense of gratitude and reverence to my dear parents, parents-in-law and sister for their blessings and endeavour to keep my moral high throughout the period of my work. I express a heartfelt apology to my nephew, Garv, for whom I was never available whenever he needed me.

Last but far from the least, I am grateful to my dear wife, who bore my negligence, ignored my outbursts and patiently waited for this long commitment to finish. I sincerely acknowledge the care, support and the encouragement that she extended towards me.

Finally, I am highly thankful to the Ministry of Human Resource development, Government of India, and Department of Mechanical Engineering, Indian Institute of Technology, Delhi for providing me the financial support for this study. I close with heartfelt gratitude to all those whom I could not mention above.

Date: Amit Arora
A combined experimental and numerical analysis of passive heat transfer augmentation in traditional inline fin and tube heat exchanger is carried out. Artificially generated longitudinal vortices were used for heat transfer augmentation, which were generated by placing a pair of ‘common upwash’ delta winglets in the downstream of each tube of the heat exchanger. Mindful generation of vortices requires the study of effect of all dominating design parameters to arrive at a favourable configuration of longitudinal vortex generators. A detailed and systematic investigation was carried out to identify the parametric space in which the said delta winglets are effective for heat transfer enhancement. Main endeavour of this work was to create a phenomenological roadmap for the optimization of all key design parameters namely, attack angle, location, and geometry of the said winglets for modifying the flow in a given geometric variant of finned tube heat exchanger. It is found that practically there can be two types of optimization policies for the location of said delta winglets depending upon the application of the heat exchanger. This study guides that upwash delta winglets with an attack angle of 45° optimally augments heat transfer in an inline aligned finned tube heat exchanger. And aspect ratio equal to unity is found to be the lower limiting value of thermo-hydraulically optimal geometry for already found optimal locations of the winglets. It is observed that optimally located winglets not only helped in augmenting heat transfer coefficients on the fin surface wetted by the tube wake, but also on the fin surface outside the tube wake. During the study of conventional delta winglets, differential augmentation in the heat transfer was observed on the two sides of a fin which is bound to create thermal stresses along the fin thickness. Such a performance augmentation may affect reliable operation of the heat exchangers, so a novel arrangement of delta winglets is proposed which enables heat transfer enhancement with better mechanical reliability. A comparison of conventional and novel configurations showed that the latter enhances thermal performance of the heat exchanger better than or at par with the former while ensuring better mechanical reliability.

Keywords: Common upwash, longitudinal vortices, vortex generators, aspect ratio.
This page is intentionally left blank
TABLE OF CONTENTS

Certificate ... i
Acknowledgement .. iii
Abstract ... v
Table of Contents .. vii
List of Figures .. xi
List of Tables ... xv
Nomenclature ... xvii

CHAPTER 1: INTRODUCTION
1.1 INTRODUCTION .. 1
 1.1.1 Motivation .. 2
 1.1.2 Impact of improved performance of fin-tube heat exchangers .. 2
1.2 TRADITIONAL FIN AND TUBE HEAT EXCHANGER ... 3
 1.2.1 Limitation of traditional method ... 3
1.3 MEASURE OF HEAT TRANSFER ENHANCEMENT IN FINNED TUBE HEAT EXCHANGER 4
 1.3.1 Enhanced thermal compactness of a fin & tube heat exchanger .. 5
1.4 ORGANIZATION OF DISSERTATION ... 6

CHAPTER 2: LITERATURE SURVEY & GAPS
2.1 TECHNIQUES FOR SINGLE PHASE HEAT TRANSFER AUGMENTATION 9
2.2 VORTEX SYSTEMS ... 11
2.3 SALIENT FEATURES OF LONGITUDINAL VORTEX GENERATORS (LVG) 11
 2.3.1 Types of Longitudinal vortex generators ... 12
2.4 STRUCTURE OF FLOW PAST LONGITUDINAL VORTEX GENERATOR ... 13
 2.4.1 Flow modifications by LVG .. 14
 2.4.2 Geometry of a winglet .. 14
2.5 HEAT TRANSFER AUGMENTATION BY LVG .. 14
 2.5.1 Various geometric shapes of LVG and number of LVG rows .. 16
 2.5.2 Effect of LVG on flow structure .. 18
 2.5.3 Effect of various design parameters of LVG. ... 20
 2.5.4 Effect of Reynolds number on performance augmentation by LVG .. 22
 2.5.5 Effect of tube arrangement, LVG arrangement, number of tubes, fin type 23
 2.5.6 Thermal management of the tube wake by LVG ... 27
 2.5.7 Miscellaneous studies .. 28
2.6 WINGLETS FOR HEAT TRANSFER ENHANCEMENT IN FINNED TUBE HEAT EXCHANGER 33
 2.6.1 Tube wake management for thermally compact heat exchanger ... 34
 2.6.2 Tube wake management by delta winglets .. 34
 2.6.3 Optimization of delta winglets .. 35
2.7 SUMMARY & GAPS IN THE PAST WORK ... 36
2.8 OBJECTIVES OF PRESENT WORK ... 37

CHAPTER 3: DESIGN DEVELOPMENT & TESTING OF EXPERIMENTAL TEST RIGS
3.1 INTRODUCTION .. 39
3.2 UPGRADATION & RESTORATION OF EXISTING TEST FACILITY ... 40
 3.2.1 Wind Tunnel ... 40
 3.2.2 Electrification & Instrumentation ... 44
3.3 AERODYNAMIC PERFORMANCE OF MEASUREMENT SECTION .. 46
3.4 CONSTRUCTION AND FABRICATION OF SINGLE TUBE HEAT EXCHANGER PROTOTYPES 46
3.5 CONSTRUCTION AND FABRICATION OF MULTI TUBE HEAT EXCHANGER PROTOTYPES 50

vii
CHAPTER 4: EXPERIMENTAL RESULTS & ANALYSIS

4.1 EXPERIMENTAL PROCEDURE ... 59
4.2 EXPERIMENTAL DATA OBTAINED FROM SINGLE TUBE PROTOTYPES 60
 4.2.1 Temperature distribution in the fin under study .. 60
 4.2.2 Apparent friction factor of single tube prototypes 66
 4.2.3 Uncertainty analysis for single tube test prototypes 69
4.3 EXPERIMENTAL DATA OBTAINED FROM INLINE ALIGNED MULTI TUBE PROTOTYPES 69
 4.3.1 Apparent friction factor of multi tube prototypes 78
 4.3.2 Uncertainty analysis for multi tube heat exchanger prototypes 79
4.4 CLOSING COMMENT .. 80

CHAPTER 5: NUMERICAL MODELLING & VALIDATION

5.1 INTRODUCTION .. 81
5.2 NUMERICAL SIMULATION OF SINGLE TUBE HEAT EXCHANGER 81
 5.2.1 Geometry of computational domain & pre-processing 82
 5.2.2 Governing equations & Boundary conditions ... 88
 5.2.3 Numerical method & Convergence criteria .. 93
 5.2.4 Grid Independence test .. 94
 5.2.5 Modelling Thermal contact resistance b/w Fin & tube 95
 5.2.6 Definition of Non-dimensional Parameters .. 96
 5.2.7 Tuning of Numerical model .. 97
 5.2.8 Validation of Numerical model .. 98
 5.2.9 Comparison of turbulence models .. 102
5.3 NUMERICAL SIMULATION OF MULTI TUBE HEAT EXCHANGER 104
 5.3.1 Geometry of computational domain & pre-processing 104
 5.3.2 Boundary conditions .. 108
 5.3.3 Grid Independence test .. 112
 5.3.4 Validation of Numerical model .. 112
5.4 CLOSING COMMENT ... 115

CHAPTER 6: GLOBAL OPTIMIZATION OF UPWASH DVG

6.1 INTRODUCTION .. 117
6.2 GLOBAL OPTIMIZATION OF UPWASH DELTA WINGLETS 118
6.3 SELECTION OF PROMISING LOCATIONS .. 120
 6.3.1 Preliminary selection .. 120
 6.3.2 Final selection .. 121
6.4 OPTIMIZATION OF LOCATION .. 124
 6.4.1 Location optimization for 15° attack angle ... 125
 6.4.2 Location optimization for 30° attack angle ... 127
 6.4.3 Location optimization for 45° attack angle ... 128
 6.4.4 Location optimization for 60° attack angle ... 130
6.5 OPTIMIZATION OF ATTACK ANGLE ... 131
6.6 EFFECT OF VARYING WINGLET LOCATION ON ENHANCED CONVECTION 134
 6.6.1 Effect of winglet location on span-wise distribution of Local heat flux 135
 6.6.2 Effect of winglet location on stream-wise distribution of Local heat 138
 6.6.3 Closure on Optimal location of the winglet set at optimal attack angle 142
6.7 SIMILARITY OF PERFORMANCE ENHANCEMENT 142
6.8 OPTIMIZATION OF DVG GEOMETRY .. 144
 6.8.1 Effect of winglet geometry on the distribution of Local heat flux 144
 6.8.2 Effect of DVG length on average thermal performance of Fins and Tubes 149
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8.3 Optimization of geometry (AR)</td>
<td>154</td>
</tr>
<tr>
<td>6.9 CLOSING REMARKS</td>
<td>157</td>
</tr>
</tbody>
</table>

CHAPTER 7: THERMO-HYDRAULIC ASSESSMENT OF OPTIMAL DVG

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 INTRODUCTION</td>
<td>159</td>
</tr>
<tr>
<td>7.2 MODIFICATION OF MEAN FLOW BY OPTIMAL UPWASH DVG</td>
<td>160</td>
</tr>
<tr>
<td>7.2.1 Enhancement of Local Velocity</td>
<td>160</td>
</tr>
<tr>
<td>7.2.2 Purposeful introduction of secondary flow</td>
<td>162</td>
</tr>
<tr>
<td>7.3 EFFECT OF OPTIMAL UPWASH DVG ON FIN TEMPERATURE</td>
<td>166</td>
</tr>
<tr>
<td>7.4 MODIFICATION OF SPAN AVERAGED HEAT FLUX BY OPTIMAL DVG</td>
<td>171</td>
</tr>
<tr>
<td>7.5 NEED FOR MULTIPLE ROWS OF DVG</td>
<td>177</td>
</tr>
<tr>
<td>7.6 DIFFERENTIAL AUGMENTATION OF HEAT TRANSFER ON TWO SIDES OF A FIN</td>
<td>179</td>
</tr>
<tr>
<td>7.7 CLOSING COMMENT</td>
<td>181</td>
</tr>
</tbody>
</table>

CHAPTER 8: NOVEL CONFIGURATION OF DELTA WINGLETS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 INTRODUCTION</td>
<td>183</td>
</tr>
<tr>
<td>8.2 OPTIMIZATION OF NOVEL CONFIGURATION OF DVG</td>
<td>183</td>
</tr>
<tr>
<td>8.2.1 Selection of promising locations</td>
<td>184</td>
</tr>
<tr>
<td>8.2.2 Optimization of location</td>
<td>186</td>
</tr>
<tr>
<td>8.2.3 Optimization of geometry (AR)</td>
<td>187</td>
</tr>
<tr>
<td>8.3 EQUAL AUGMENTATION OF NUSSELT NUMBER ON TWO SIDES OF A FIN</td>
<td>189</td>
</tr>
<tr>
<td>8.4 THERMO-HYDRAULIC COMPARISON OF SINGLE & DUAL PAIR OPTIMAL WINGLETS</td>
<td>190</td>
</tr>
<tr>
<td>8.4.1. Comparison at same Reynolds number condition</td>
<td>190</td>
</tr>
<tr>
<td>8.4.2 Comparison at same pumping power condition</td>
<td>191</td>
</tr>
<tr>
<td>8.5 CLOSING COMMENT</td>
<td>192</td>
</tr>
</tbody>
</table>

CHAPTER 9: SUMMARY, CONCLUSIONS & FUTURE WORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 INTRODUCTION</td>
<td>193</td>
</tr>
<tr>
<td>9.2 MAJOR MILESTONES OF THE WORK</td>
<td>193</td>
</tr>
<tr>
<td>9.3 MAJOR CONCLUSIONS FROM THE WORK</td>
<td>194</td>
</tr>
<tr>
<td>9.4 SUGGESTIONS FOR FUTURE WORK</td>
<td>197</td>
</tr>
</tbody>
</table>

REFERENCES .. 199

PUBLICATIONS .. 205

BRIEF BIO-DATA OF THE AUTHOR ... 207
This page is intentionally left blank
LIST OF FIGURES

Fig. 1.1 Schematic view of a Fin-and-tube heat exchanger ... 1
Fig. 1.2 Temperature distribution for single phase flow in a single pass counter flow heat exchanger .. 6
Fig. 2.1 Passive generation of secondary flow structures by winglets ... 10
Fig. 2.2 Karman vortex street behind a circular cylinder in cross flow at Re = 140 11
Fig. 2.3 Types of longitudinal vortex generators (LVG) .. 12
Fig. 2.4 Vortical description of wake structure for a flow past a delta winglet 13
Fig. 2.5 A pair of symmetric delta winglets (DVG) ... 14
Fig. 2.6 Qualitative flow structure in a fin-and-tube element ... 15
Fig. 2.7 Configurations of a winglet pair .. 17
Fig. 2.8 Plan view of heat exchanger (a) Inline tube array (b) Staggered tube array 20
Fig. 2.9 Inline & Staggered tube array with single & double rows of ‘toe-out’ DVG 24
Fig. 2.10 (a) Single VG pair (b) 3VG-Aligned VG array (alternate tube) (c) 3VG-Staggered VG array ... 25
Fig. 2.11 Arrangement of ‘Common upwash’ DVG ... 26
Fig. 2.12 Wavy fin with delta winglets (a) Staggered tube array (b) Inline tube array 27
Fig. 2.13 Principal design parameters of delta winglets in a Fin & tube heat exchanger 34
Fig. 3.1 Schematic of Wind tunnel and Instrumentation .. 41
Fig. 3.2 Exploded view of the test section .. 42
Fig. 3.3 Velocity distribution in the measuring section ... 46
Fig. 3.4 Single tube heat exchanger with single pair upwash DVG .. 47
Fig. 3.5 Fin under study ... 48
Fig. 3.6 Spatial distribution of thermocouples in the single tube fin .. 49
Fig. 3.7 Winglet locator ... 50
Fig. 3.8 Fin spaces of single tube heat exchanger prototypes ... 51
Fig. 3.9 Inline aligned multi tube heat exchanger with single pair upwash DVG 52
Fig. 3.10 Fin spaces of multi tube heat exchanger prototypes .. 52
Fig. 3.11 Fins of multi tube heat exchanger prototypes ... 54
Fig. 3.12 Test models of multi tube heat exchanger ... 54
Fig. 3.13 Spatial distribution of thermocouples in the multi tube fin ... 55
Fig. 4.1 Detailed View of Test Section with Instrumentation & Prototype Heat Exchanger 60
Fig. 4.2 Temporal evolution of tube wall temperature ... 61
Fig. 4.3 Temperature distribution in the fin at steady state ... 62
Fig. 4.4 Isotherms on single tube fin without DVG .. 63
Fig. 4.5 Isotherms on single tube fin with single pair upwash DVG ... 64
Fig. 4.6 Isotherms on single tube fin with dual pair upwash DVG ... 65
Fig. 4.7 Repeatability test for Single tube test model without DVG .. 68
Fig. 4.8 Repeatability test for Single tube test model with Single pair upwash DVG 68
Fig. 4.9 Repeatability test for Single tube test model with Dual pair upwash DVG69 69
Fig. 4.10 Isotherms on the fin of baseline (plain) multi tube heat exchanger 72
Fig. 4.11 Isotherms on the fin of baseline (plain) multi tube heat exchanger 74
Fig. 4.12 Comparison of isotherms on the fin at Reynolds number of 1415 75
Fig. 4.13 Comparison of isotherms on the fin at Reynolds number of 4245 76
Fig. 4.14 Comparison of isotherms on the fin at Reynolds number of 7075 77
Fig. 4.15 Repeatability test for Multi tube test model without DVG ... 79
Fig. 4.16 Repeatability test for Multi tube test model with single pair upwash DVG 79
Fig. 5.1 Fins of single tube heat exchanger with upwash DVG ... 82
Fig. 5.2 Fin-space of single tube heat exchanger with single pair upwash DVG 83
Fig. 5.3 Computational domain of single tube heat exchanger .. 85
Fig. 5.4 Splitting fin bounded fluid continuum into sub-domains ... 86
Fig. 5.5 Graded mesh for resolving wall effects (a) Fins (b) Tube ... 86
Fig. 5.6 Spanwise symmetric fin-space of single tube heat exchanger ... 87
Fig. 6.29 Location of the lines for drawing stream-wise distribution of Local Heat flux 147
Fig. 6.30 Effect of DVG geometry on stream-wise distribution of Local heat flux (Z=0.6D) 148
Fig. 6.31 Velocity magnitude contours at Re=4245 .. 148
Fig. 6.32 Effect of DVG geometry on stream-wise distribution of Local heat flux (Z=0.8D) 149
Fig. 6.33 Effect of DVG length on the mean flow directed into the tube wake 150
Fig. 6.34 Effect of DVG length on velocity magnitude contours in the tube wake 151
Fig. 6.35 (a) Velocity magnitude contours for plain fins (b) Area representing fin in the tube wake 151
Fig. 6.36 Effect of DVG length on SCF of upper fin face in the tube wake 152
Fig. 6.37 Effect of DVG length on SCF of tubes .. 153
Fig. 6.38 Effect of DVG length on SCF of Fins ... 153
Fig. 6.39 Effect of DVG length on SFF of heat exchanger .. 155
Fig. 6.40 Phenomenological optimization of Geometry (DVG location for THO Max. SCF) 156
Fig. 6.41 Phenomenological optimization of Geometry (DVG location for Max. SCF) 156
Fig. 7.1 Globally optimal upwash DVG in an inline aligned finned tube heat exchanger 159
Fig. 7.2 Velocity vectors at Reynolds number of 4245 ... 161
Fig. 7.3 Secondary flow structures created by globally optimal ‘toe out’ delta winglets 163
Fig. 7.4 Comparison of pathlines at Reynolds number of 4245 .. 165
Fig. 7.5 Temperature contours at Reynolds number of 4245 .. 166
Fig. 7.6 Span averaged excess temperature of upper fin face ... 167
Fig. 7.7 Location of lines for drawing streamwise & spanwise distributions of local fin temperature ... 169
Fig. 7.8 Variation of fin temperature in streamwise direction ... 169
Fig. 7.9 Fin temperature in spanwise direction ... 170
Fig. 7.10 Span averaged Heat flux on upper fin face with DVG for Max. SCF 172
Fig. 7.11 Span averaged Heat flux on upper fin face with DVG for THO Max. SCF 173
Fig. 7.12 Span averaged Heat flux on upper fin face for both optimal DVG 174
Fig. 7.13 Scaled span averaged Heat flux distribution on upper fin face 175
Fig. 7.14 Performance study of the two optimal upwash delta winglets 176
Fig. 7.15 Growing effectiveness of optimal upwash DVG in the flow direction 178
Fig. 7.16 Differential augmentation of Nusselt number on two sides of a fin by DVG 180
Fig. 7.17 Spanwise symmetric fin-space of multi tube heat exchanger ... 180
Fig. 8.1 Physically possible locations of dual pair upwash delta winglets in the solution domain .. 185
Fig. 8.2 Promising locations of dual pair upwash delta winglets .. 185
Fig. 8.3 Phenomenological optimization of location of Dual pair upwash DVG 186
Fig. 8.4 Aspect ratios of dual pair delta winglets .. 187
Fig. 8.5 Phenomenological optimization of Geometry of Dual pair upwash DVG 188
Fig. 8.6 Equal augmentation of Nusselt number on two sides of a fin by dual pair DVG 189
Fig. 8.7 Variation of Colburn’s factors of various Heat exchangers with Reynolds number 191
Fig. 8.8 Variation of Apparent friction factors of various Heat exchangers with Reynolds number 191
Table 2.1: Miscellaneous studies on vortex generator enabled heat transfer augmentation................................. 29
Table 3.1: Technical specifications of Induced draft Axial flow fan ... 44
Table 3.2: Technical specifications of Temperature data logger... 45
Table 3.3: Technical specifications of Differential pressure meter (Testo 512®) .. 45
Table 3.4: Technical specifications of Thermal velocity probe (Testo 435®) .. 45
Table 3.5: Bill of material & Geometric details of Single tube heat exchanger prototypes 47
Table 3.6: Bill of material & Geometrical Details of Multi tube heat exchanger prototypes 53
Table 3.7: Temperature by reference thermocouple ... 56
Table 3.8: Temperature correction for thermocouples attached to single tube prototypes 57
Table 3.9: Temperature correction for thermocouples attached to multi tube prototypes 59
Table 4.1: Steady state temperature distribution in the single tube fin under study .. 62
Table 4.2: Static pressure drop across single tube heat exchanger prototypes ... 67
Table 4.3: Steady state temperature distribution in the multi tube fin without winglets 70
Table 4.4: Steady state temperature distribution in the multi tube fin with globally optimal winglets 71
Table 4.5: Static pressure drop across multi tube heat exchanger prototypes .. 78
Table 5.1: Grid independence test for plain single tube heat exchanger ... 95
Table 5.2: Grid independence test for modified single tube heat exchanger ... 95
Table 5.3: Grid independence test for plain multi tube heat exchanger ... 112
Table 5.4: Grid independence test for modified multi tube heat exchanger ... 112
Table 8.1: Optimal Single pair DVG (Max. SCF) & Dual pair DVG at same pumping power 192
Table 8.2: Optimal Single pair DVG (THO Max. SCF) & Dual pair DVG at same pumping power 192
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Aspect ratio of LVG</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>b</td>
<td>Span of LVG</td>
</tr>
<tr>
<td>B</td>
<td>Breadth</td>
</tr>
<tr>
<td>BOM</td>
<td>Bill of Material</td>
</tr>
<tr>
<td>c</td>
<td>Chord length of LVG</td>
</tr>
<tr>
<td>C</td>
<td>Thermal conductance</td>
</tr>
<tr>
<td>D</td>
<td>Tube diameter</td>
</tr>
<tr>
<td>D_h</td>
<td>Hydraulic diameter</td>
</tr>
<tr>
<td>DVG</td>
<td>Delta winglet type vortex generator</td>
</tr>
<tr>
<td>E_h</td>
<td>Enhancement ratio</td>
</tr>
<tr>
<td>F</td>
<td>Correction factor for heat exchanger</td>
</tr>
<tr>
<td>f_app</td>
<td>Apparent friction factor</td>
</tr>
<tr>
<td>G</td>
<td>Mass velocity</td>
</tr>
<tr>
<td>h</td>
<td>Heat transfer coefficient</td>
</tr>
<tr>
<td>H</td>
<td>Finspace or height of DVG</td>
</tr>
<tr>
<td>HX</td>
<td>Heat exchanger</td>
</tr>
<tr>
<td>j</td>
<td>Colburn’s factor</td>
</tr>
<tr>
<td>k</td>
<td>Turbulent kinetic energy or Thermal conductivity</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>LVG</td>
<td>Longitudinal vortex generator</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>O.D.</td>
<td>Outer diameter</td>
</tr>
<tr>
<td>Δp</td>
<td>Pressure drop</td>
</tr>
<tr>
<td>P</td>
<td>Perimeter (wetted)</td>
</tr>
<tr>
<td>P_f</td>
<td>Fin pitch</td>
</tr>
<tr>
<td>P_L</td>
<td>Longitudinal tube pitch</td>
</tr>
<tr>
<td>P_T</td>
<td>Transverse tube pitch</td>
</tr>
<tr>
<td>Q</td>
<td>Heat transfer rate</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
</tr>
<tr>
<td>R_h</td>
<td>Thermal resistance</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>SFF</td>
<td>Scaled Friction factor</td>
</tr>
<tr>
<td>SCF</td>
<td>Scaled Colburn’s factor</td>
</tr>
<tr>
<td>SHF</td>
<td>Scaled Heat flux</td>
</tr>
<tr>
<td>T</td>
<td>Temperature or Thickness</td>
</tr>
<tr>
<td>T_{inf}</td>
<td>Far field inlet air temperature</td>
</tr>
<tr>
<td>ΔT_{LMTD}</td>
<td>Log mean temperature difference</td>
</tr>
<tr>
<td>T_w</td>
<td>Tube wall temperature</td>
</tr>
<tr>
<td>T/C</td>
<td>Thermocouple</td>
</tr>
<tr>
<td>u</td>
<td>Velocity component in X-direction</td>
</tr>
<tr>
<td>U</td>
<td>Overall heat transfer coefficient</td>
</tr>
<tr>
<td>U_{2e}</td>
<td>Far field inlet air velocity</td>
</tr>
</tbody>
</table>
\(v \) Velocity component in Y-direction
\(V \) Velocity
\(\text{VG} \) Vortex generator
\(w \) Velocity component in Z-direction
\(X \) Coordinate in streamwise direction
\(Y \) Coordinate normal to the fin plane
\(Z \) Coordinate in spanwise direction

\(\alpha \) Attack angle of DVG
\(\varepsilon \) Turbulent kinetic energy dissipation rate
\(\rho \) Density
\(\theta^* \) Non-dimensional Excess temperature
\(\mu \) Dynamic viscosity
\(\omega \) Absolute uncertainty

\(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \) Partial derivatives in respective directions