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ABSTRACT

The present thesis deals with the large in-plane and out-of-plane deformation
behaviors of flat structural panels under various loading conditions. The structural
performance of such panels depends on the mechanical behavior of its constituent
material, its geometry and loading conditions. An appropriate experimental procedure
(experimental setup, specimen geometry and measurement technique) is required for the
mechanical characterization of the material, while a suitable numerical model is
necessary to simulate the in-plane and transverse deformations of the commonly used
flat panels in civil, mechanical and aircraft structures. The present thesis is an attempt to
examine the suitability of different specimen geometries for the "material
characterization™ and employ an appropriate numerical technique for the "nonlinear
analysis of non-rectangular plates".

In the beginning, an extensive experimental investigation is conducted on
aluminum (AI1100) and mild steel (IS 1570) plates under various in-plane loading
(tension, shear and combined tension and shear) conditions using the modified Arcan
fixture. The full-field displacement and strain profiles of metallic specimens under in-
plane loading are obtained using the three-dimensional digital image correlation (DIC).
Four different geometries of the specimens are judiciously selected, so that some of the
specimens undergo large in-plane strain without significant out-of-plane deformation,
while the other specimens buckle during the in-plane plastic deformation. In the absence
of plastic buckling, the constitutive relations of aluminum (Al1100) and mild steel (IS
1570) plates under pure tension and pure shear are obtained. The corresponding material
properties are subsequently used to simulate the elastic / plastic buckling loads of other
sets of specimen shapes and the flexural behavior of different flat panels. The presence

of in-plane shear stress significantly reduces the ultimate tensile strength of both



aluminum and mild steel plates. The mild steel specimens show a higher tendency for
out-of-plane buckling compared to aluminum specimens, as the hardening exponent is
higher for mild steel.

Next, an effort is made to develop a numerical model for the linear and nonlinear
analyses of shear deformable quadrilateral plates. The Reissner-Mindlin quadrilateral
plates are discretized with quadrilateral background cells. Then, the membrane and
bending stiffness matrices are evaluated using the edge-based smoothed finite element
method (ES-FEM). The shear stiffness matrix is separately obtained for four-node
quadrilateral plate bending elements using a proposed "cell-based smoothed transverse
shear strain approach”. An in-house MATLAB code is developed, and the convergence,
accuracy and distortion-sensitivity of the proposed smoothing algorithm are found to be
good for the linear analysis of thin and moderately thick arbitrary quadrilateral plates.
The performance of the proposed "smoothed shear strain approach™ is compared with
the existing "edge-consistent shear strain technique” and "MITC (mixed interpolation of
tensorial components) approach” for the four-node quadrilateral plate bending element.

Thereafter, the bending, buckling and vibration behaviors of isotropic (mild steel)
rectangular, trapezoidal and quadrilateral plates are taken up for investigation. Both the
edge compression and edge shear are considered for the stability analysis of rectangular
and trapezoidal panels after estimating the exact pre-buckling in-plane stress resultants.
The linear elastic flexural analysis for isotropic flat panels is extended to geometrically
non-linear bending, post-buckling and large amplitude free vibration behaviors of non-
rectangular flat panels. The bending stiffness of trapezoidal and quadrilateral plates
significantly increases with the reduction of one of its edge-length, while the lengths of
the other three edges are kept nearly constant. An attempt is also made to study the plastic

buckling behavior of thick aluminum (AI1100) and mild steel (IS 1570) panels under in-

Vi



plane shear. The numerical study is also extended to quadrilateral plates made of
laminated composite materials with idealistic materials properties. An attempt is also
made to present the numerical results in non-dimensional form for easy reference to

engineers and researchers working on the non-rectangular panels.
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Non-dimensional frequencies (@ = a)azlh\/pTEZ) of four-layer
[45°/-45°/-45°/45°] laminated composite thin (a/h = 100)

trapezoidal plates.
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Table 7.5.3.

Table 7.5.4.

Table 7.5.5.

Table 7.5.6.

Table 7.5.7.

Table 7.5.8.

Non-dimensional frequencies (@ = a)aZ/h\/p/—Ez) for four-
layer [0%90%90°%0° laminated composite thin (a/h = 100)
Quadrilateral plates (Fig 7.2.1c).

Non-dimensional frequencies (@ = wa®/h./p/E, ) for four-
layer [45°/-45°/-45°/45°] laminated composite thin (a/h = 100)
Quadrilateral plates (Fig 7.2.1c).

The nonlinear frequency ratios (wn/wl) of 4-layer
[0%90°%/90°/0°] thin (a/h = 100) laminated quadrilateral plates
with different boundary condition.

The nonlinear frequency ratios (wni/wL) of 4-layer [45°/-45°/-
45°/45°] thin (a/h = 100) laminated quadrilateral plates with
different boundary condition.

The nonlinear frequency ratios (wn/wl) of 4-layer
[0%90°%/90°/0°] thin (a/h = 100) laminated quadrilateral plates
with different boundary condition.

The nonlinear frequency ratios (wn./wL) of 4-layer [45°/-45°/-
45°/45°] thin (a/h = 100) laminated quadrilateral plates with

different boundary condition.
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LIST OF SYMBOLS

Young’s modulus

Poisson’s Ratio

Shear modulus

Density of the material

Stress field in the structure

Yield strength of the material
Ultimate tensile strength of the material
Ultimate shear strength of the material
secant shear modulus

Strain field in the structure

Shear strain

Bending strain

Shear strain
Linear component of membrane strain

Nonlinear component of membrane strain

Equivalent plastic strain
Stress tri-axiality ratio

Dissipated fracture energy

Rotation of mid plane about the Y-axis
Rotation of mid plane about the X-axis
Membrane strain energy

Bending strain energy

Shear strain energy

Direction cosine

Tangential shear strain

Vector of degree of freedom

Natural frequency of the structure
Thickness of the flat panel

Length of the structure

Width of the structure
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Focal length of the lense

Non-dimensional critical buckling load
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