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Abstract

Supercapacitor is a class of electrochemical energy storage device that show a
variation in the potential with the amount of charge stored. It is ideally suited
to applications requiring pulse power, such as emergency opening of doors in jet
planes, regenerative breaking in automobiles, etc. It bridges the gap between the
conventional dielectric capacitor and a battery. It has higher energy density as
compared to a dielectric capacitor and larger power density, cyclic life compared to
a battery. However, commercial applications of supercapacitors is limited by very
small energy density that is an order of magnitude smaller than a battery. Further,
the requirement of higher energy and power density on the storage device is rising
with the continuous improvement and increase in features modern portable and
flexible electronic gadgets and other applications. Research to improve the energy
density of supercapacitor is primarily focused on developing better electrode mate-
rials. The strategies depend on the type of supercapacitor. For an electric double
layer capacitor, the effort is on developing electrodes with high specific surface
area without compromising on the electronic conductivity. For a pseudocapacitor
electrode, apart from the surface area improvement in electronic conductivity of
the semi-conducting active material is also a prime focus. Another direction in the

supercapacitor research is to improve the frequency response of the device. Most-
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supercapacitor show capacitive behavior up to 5 Hz signal frequency and there’s
is a huge scope for fast frequency response supercapacitor for filtering applications
at high frequency which are currently employ bulky electrolytic capacitor.

In this work, I aimed to improve the energy density (based on total weight
of a device) and frequency response of supercapacitors through electrochemical
treatment and defect engineering. In the first experimental study, a commercially
available highly oriented pyrolytic graphite sheet was partially exfoliated in dif-
ferent sulfate ion based electrolytes to get vertically oriented graphene nanoflakes
morphology on the surface. Different process parameters such as current density
of exfoliation, time of exfoliation, pH and concentration of the electrolyte were

2

optimized and the best electrode showed areal capacitance of 752 mF cm™ at

current density of 2 mA cm™2.

The rate of partial exfoliation was found to be
slow in low pH electrolyte solution and the obtained electrode has higher areal ca-
pacitance. It was observed that expansion of electrode play an equally important
role as the open channel morphology of vertically oriented graphene nanoflakes in
improving the capacitive performance.

A 2D graphite sheet can expand only along the thickness of electrode, whereas
fiber paper has advantage of possible expansion of the fibers in three dimensions.
Therefore, in our second study, I have used carbon fiber paper as an electrode
material. The Electrochemical anodization of the carbon fiber paper was carried
out in sulfuric acid solutions of different concentrations, ranging from 1 M—14 M.
The characterization done show that it causes structural adjustments that expose a
greater number of electrochemically active graphene edges to the surface, increases

surface roughness, increases defects in graphitic structure and introduces oxygen

functionality on the surface. These changes result in two orders of magnitude



increase of the surface area, and several order of magnitude increased in areal

capacitance compared to pristine electrode. The areal capacitance of the anodized
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carbon fiber paper at the optimal conditions, 2.47 F cm™ at 2 mA cm™, is
50% more than the best literature value for a carbon-based or a pseudocapacitive
material-loaded carbon electrode.

The third study was on improving the capacitive performance of anatase, a
pseudocapacitive material of low cost, electrochemical stability, and high theoret-
ical capacitance, but poor electrical conductivity. A simultaneous improvement
in electrical conductivity and nanostructuring was undertaken. A two step hy-
drothermal route was employed to dope anatase with fluorine element. Fluorine
doping leads to the creation of oxygen vacancies as well as the Ti*T states. Elec-
trochemical characterizations show that these defects increase electronic charge
carrier density and local conductivity of the doped anatase by an order of magni-
tude compared to the pristine anatase. In addition, the hydrothermal treatment
lead to nanostructuring of anatase that increased the surface area by order of
magnitude. As a result of the two improvements, doped anatase showed three
times (236 F g!) higher specific capacitance than the pristine one and its rate
capability is also better.

In the last study, the focus was to improve the frequency responsne of a pseudo-
capacitor for kilohertz frequency applications. I have fabricated a pseudocapacitor
electrode with a thin anatase layer of open pore morphology by anodization of a
titanium sheet in NH4F solution. Electrochemical reduction was performed to
improve the electrical conductivity of the anatase electrode. The electrode syn-
thesis parameters such as anodization potential, reduction potential, and time of

reduction were optimized to get a kilohertz response pseudocapacitor. The kHz
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pseudocapacitor displayed ability to retain capacitive behavior at high frequencies
(190 uF cm™ at self resonance frequency (SRF) of 60 kHz) that is far superior
to the kHz EDLCs (20 uF cm™2 at 80 kHz SRF or 67 uF cm™2 at 20 kHz SRF).
The pseudocapacitor could filter a 50 kHz sinusoidal signal to a smooth line with
a variance of less than 4x107%.

Keywords: Supercapacitors, electrochemical treatment, defect engineering,
electrochemical energy storage, vertically oriented graphene nanoflakes, carbon

fiber paper, anatase, kilohertz capacitor.
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