EPrints@IIT Delhi >
Faculty Research Publicatons  >
Electrical Engineering >

Please use this identifier to cite or link to this item: http://eprint.iitd.ac.in/handle/2074/2229

Title: Fuzzy edge detector using entropy optimization
Authors: Hanmandlu, Madasu
See, John
Vasikarla, Shantaram
Keywords: Edge detector
Fuzzy image processing
Image enhancement
Contrast intensification operator
Crossover point
Gaussian membership function
Issue Date: 2004
Citation: Information Technology: Coding and Computing, Proceedings ITCC International Conference on, 1, 665 - 670p.
Abstract: This paper proposes a fuzzy-based approach to edge detection in gray-level images. The proposed fuzzy edge detector involves two phases - global contrast intensification and local fuzzy edge detection. In the first phase, a modified Gaussian membership function is chosen to represent each pixel in the fuzzy plane. A global contrast intensification operator, containing three parameters, viz., intensification parameter t, fuzzifier f/sub h/ and the crossover point x/sub c/, is used to enhance the image. The entropy function is optimized to obtain the parameters f/sub h/, and x/sub c/ using the gradient descent function before applying the local edge operator in the second phase. The local edge operator is a generalized Gaussian function containing two exponential parameters, /spl alpha/ and /spl beta/. These parameters are obtained by the similar entropy optimization method. By using the proposed technique, a marked visible improvement in the important edges is observed on various test images over common edge detectors.
URI: http://eprint.iitd.ac.in/dspace/handle/2074/2229
Appears in Collections:Electrical Engineering

Files in This Item:

File Description SizeFormat
hanmandlufuz2004.pdf361.97 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback