भारतीय प्रौद्योगिकी संस्थान दिल्ली
Indian Institute of Technology, Delhi
  • Login
View Item 
  •   Home
  • Faculty Research Publications
  • Physics
  • View Item
  •   Home
  • Faculty Research Publications
  • Physics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation

Thumbnail
View/Open
sharmaabs2004.pdf


Collections
  • Physics [342]
Metadata
Show full item record
Author: Sharma, Anuj K; Gupta, B D

Advisor: Advisor

Date: 2004

Publisher:
Citation: Sensors an

Series/Report no.:
Item Type: Article

Keywords: Optical fiber; Surface plasmon resonance; Absorption; Sensor

Abstract: In this paper, an optical absorption based fiber optic surface plasmon resonance (SPR) sensor has been studied theoretically. The theoretical treatment is based on Kretschmann’s SPR theory and the Lorentz model that expresses a damped harmonic oscillator is included in the treatment for optical absorption in the sensing layer. The optical source considered is an un-polarized collimated beam. The light is coupled to the fiber using a microscope objective that focuses the beam at the center of the input face of the fiber. The effects of the parameters related to the sensing region, the light source and the optical fiber on the sensitivity and the operating range of the SPR sensor have been studied with the help of numerical calculations and computer simulations. It has been found that the excitation frequency in absorption-based fiber optic SPR sensor is an important parameter. The sensitivity is better for the lower off-resonance excitation frequency. The sensitivity and the operating range of the sensor are better for large value of the core diameter. The optimization of numerical aperture of the fiber, film thickness and the length of the sensing region is required to achieve the maximum sensitivity. Further, the increase in the extinction coefficient of the sample increases the sensitivity of the sensor while the decrease in the width of its absorption spectrum increases the sensitivity. The sensitivity and the operating range of the sensor are better for small values of the refractive index of the absorbing sample.
Contact Us
Shankar B. Chavan
Computer Applications Division
Central Library, IIT Delhi
shankar.chavan@library.iitd.ac.in
NDLTD
Shodhganga
NDL
ePrints@IISc
etd@IISc
IR@IIT Bombay
NewsClips @IITD
  • Facebook
  • twitter
  • youtube
  • instagram
  • pinterest
  • Linkedin

Browse

All of IITDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Contact Us
Shankar B. Chavan
Computer Applications Division
Central Library, IIT Delhi
shankar.chavan@library.iitd.ac.in
NDLTD
Shodhganga
NDL
ePrints@IISc
etd@IISc
IR@IIT Bombay
NewsClips @IITD
  • Facebook
  • twitter
  • youtube
  • instagram
  • pinterest
  • Linkedin