भारतीय प्रौद्योगिकी संस्थान दिल्ली
Indian Institute of Technology, Delhi
  • Login
View Item 
  •   Home
  • Faculty Research Publications
  • Atmospheric Sciences [CAS]
  • View Item
  •   Home
  • Faculty Research Publications
  • Atmospheric Sciences [CAS]
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emission estimates and trends (1990–2000) for megacity Delhi and implications

Thumbnail
View/Open
gurjaremi2004.pdf


Collections
  • Atmospheric Sciences [CAS] [37]
Metadata
Show full item record
Author: Gurjar, B R; Aardenne, J A van; Lelieveld, J; Mohan, M

Advisor: Advisor

Date: 2004

Publisher:
Citation: Atmospheri

Series/Report no.:
Item Type: Article

Keywords: Urban air pollution; Emission inventory; Atmospheric chemistry; Trajectory analysis; Regional-global impact

Abstract: A comprehensive emission inventory for megacity Delhi, India, for the period 1990–2000 has been developed in support of air quality, atmospheric chemistry and climate studies. It appears that SO2 and total suspended particles (TSP) are largely emitted by thermal power plants (68% and 80%, respectively), while the transport sector contributes most to NOx, CO and non-methane volatile organic compound (NMVOC) emissions (>80%). Further, while CO2 has been largely emitted by power plants in the past (about 60% in 1990, and 48% in 2000), the contribution by the transport sector is increasing (27% in 1990 and 39% in 2000). NH3 and N2O are largely emitted from agriculture (70% and 50%, respectively), and solid waste disposal is the main source of CH4 (80%). In the past TSP abatement to improve air quality has largely focused on traffic emissions; however, our results suggest that it would be most efficient to also reduce TSP emissions by power plants. We also assessed the potential large-scale transport of the Delhi emissions based on 10-day forward trajectory calculations. The relatively strong growth of NOx emissions indicates that photochemical O3 formation in the regional environment may be increasing substantially, in particular in the dry season. During the summer, on the other hand, convective mixing of air pollutants may reduce regional but increase large-scale, i.e. hemispheric effects.
Contact Us
Shankar B. Chavan
Computer Applications Division
Central Library, IIT Delhi
shankar.chavan@library.iitd.ac.in
NDLTD
Shodhganga
NDL
ePrints@IISc
etd@IISc
IR@IIT Bombay
NewsClips @IITD
  • Facebook
  • twitter
  • youtube
  • instagram
  • pinterest
  • Linkedin

Browse

All of IITDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister
Contact Us
Shankar B. Chavan
Computer Applications Division
Central Library, IIT Delhi
shankar.chavan@library.iitd.ac.in
NDLTD
Shodhganga
NDL
ePrints@IISc
etd@IISc
IR@IIT Bombay
NewsClips @IITD
  • Facebook
  • twitter
  • youtube
  • instagram
  • pinterest
  • Linkedin